
Handling Problems of Aging Handling Problems of Aging
Software and Unsupportable Software and Unsupportable
Hardware Hardware –– How we did it.How we did it.

By Eric Shulman
Space & Missile Systems Center

Los Angeles AFB, Calif

Alan D. Matt
Aerospace Corp

Wilkie Haw
Aerospace Corp

10 March 2003

The Problem The Problem –– A Maintenance A Maintenance
HeadacheHeadache

The Jovial Programming Language was widely used
by the Air Force in the 1960s and 1970s.
A number of these systems are still in operation
Jovial was developed in 1959-60
Jovial is similar to ALGOL (Also ancient)
Inertial Measurement Software (IMS) for the Atlas
Centaur and Titan IV are written in the Jovial
Programming Language.
CPU used for IMS is 1750A with PACE Chip Set
(circa 1980, very ancient)
This Jovial Based IMS Code is still in use today

Rocket

Development

Cartoon

Project GoalsProject Goals

Our goal was to convert a tightly coupled
Jovial J73 software module (with bit
manipulation and COMPOOLs) into C code
using the Embedded Information Systems
Re-Engineering (EISR) Conversion Tool.
This should raise the difficulty level to
duplicate a more typical case scenario.

The ScheduleThe Schedule

The project was initially projected to have a schedule
between 3 to 6 months involving 2 full-time people
(Probably closer to 6 months) – 1 MTE.
The project was task driven and schedule slips were

planned to occur as operational programs forced us to
time-share the Atlas Centaur simulator.
The project actually involved 3 part-time personnel
working from 3 December 2001 through completion
on 27 June 2002 (We only used .6 MTE).
1 MTE = 1810 Hours (STE used in presentation, it is fully

burdened).

Initial Gantt ChartInitial Gantt Chart

ID

1

2

3

4

5

6

7

8

9

10

Task Name

Acquire Jovial to 1750A Compiler

Acquire C to 1750A Compiler

Reserve Time on 1750A Simulator

Analyze Jovial Software Modules

Convert Jovial Module to C

Analyze C Module

Write Any Req'd Pgm Stubs for C Module

Compile, Debug, and Profile C Module

Compile Orig Jovial Code and Profile

Write Report on Final Result

Start Date

8/1/01

8/1/01

8/1/01

10/8/01

11/5/01

11/19/01

12/3/01

1/2/02

2/5/02

3/5/02

End Date

8/1/01

8/1/01

8/1/01

11/5/01

11/19/01

12/10/01

12/24/01

2/5/02

3/5/02

3/26/02

1d

1d

1d

21d

11d

16d

16d

25d

21d

16d

Aug Sep Oct Nov Dec Jan

2001 2002
Duration

The ProjectThe Project
This project was to evaluate the ability of the Embedded
Information Systems Re-Engineering (EISR)
Conversion Tool Version 1.0 (owned by the USAF) to
convert a portion of an AF system still using the Jovial
Programming Language to a newer programming
language (in this case C). Cost, schedule, and risk were
to be addressed.
We spent 3 weeks locating the best conversion candidate
This was a proof of concept project only, the re-
engineered software was not planned to be deployed.
The project evaluated potential Hardware rehosting
options.
Please note that the project was a success despite the
number of problems encountered.

The Project Cont’dThe Project Cont’d

Estimated cost to completely rewrite: About 3 persons for 1
year or 3 person years (1 Person Year = 1810 hrs) or a total of
5430 hours.

The actual conversion of the Jovial to C Code took 1082 hours
or .6 person years and was comprised of the following tasks:
– Time Spent in preparation to Final Compile

Analyzing C code, Converting the code, performing prelim
compiles to identify the more serious problems

– Time spent in final C Compile
– Time spent is Assembling code
– Time spent in Linking
– Time spent in Open Loop Testing
– Time spent in Closed Loop Testing

Project ScopeProject Scope
Chosen Target - The Inertial Measurement Software
part of the Atlas Centaur Launch Vehicle
Using Embedded Information Systems Re-
Engineering (EISR) Conversion Tool Version 1.0
(owned by the USAF)
Use existing 1750A based hardware platform for first
part of effort
Re-engineer the existing Jovial J73/Assembly code to
C/Assembly
Six Degrees of Freedom (6DOF) simulator will be
used instead of launch vehicle (Delta from actual
vehicle < .006%).

So What Do We Do FirstSo What Do We Do First

C-17

Landing

On Carrier

Before You Can Even StartBefore You Can Even Start
We Needed To:We Needed To:

• Document exactly what you are trying to do
• Create GANT Chart(s) that detail all of the tasks and proposed

completion dates.
• Review available funding for both equipment and people

versus time and tasking
• Determine where the project will be located? Are there any

security issues? There were.
• Determine people power loading chart

• What type of people are required
• Are the required people available
• Do the people have appropriate clearances
• What tasks would be assigned to which people
• Do the people get along (Could be problems if they don’t)
• Available STE (Burdened Staff Hours) since using FFRDC

The Development TeamThe Development Team
You Don’t Want ThisYou Don’t Want This

Picture of

Catfight

Do Hardware or Software FirstDo Hardware or Software First

You do not want to re-engineer both the hardware and
the software at the same time – too many unknowns
We did the software first because it was the main
focus of our effort and was the correct first step in re-
engineering the system.
If we had re-engineered the hardware first, unless we
used hardware emulation, we would have had to re-
engineer the software at the same time – a problem.

ReRe--Engineering the SoftwareEngineering the Software
Step 1 Step 1 –– Research Research

Need to evaluate:
– Available Compilers for target

Experience, references, pick best value
– Evaluate EISR Tool for known issues/limitations
– Evaluate Software Engineering Environment to use

Identify compiler bugs/limitations (if possible)
Write representative test code to try to exercise the

compiler/linker
– Testing equip/environment (including availability)
– Get team together find out each member strengths and

weaknesses. Get interaction started. Review the
tasking breakdowns, etc.

ReRe--Engineering the Software Engineering the Software
Step 2 Step 2 –– ReRe--Engineering, PreliminaryEngineering, Preliminary

Purchase Selected C Cross Compiler for 1750A Processor
Introduce team members
– Have team meeting and evaluate team interaction (Do they get along)
– Finalize the tasking assignments and tentative due dates

Acquire development computers, install operating system (Linux
7.1 & Windows 2000), network the machines, install compilers
Install and Learn to use the EISR Tool (Get training) – 12 hrs
Evaluate/review the 54 Jovial modules (5724 SLOCs)
Evaluate/review the 28 Assembly Modules (1147 SLOCs)
Evaluate/review the 13 COMPOOL Modules (1907 SLOCs)

Purchased/Acquired EquipmentPurchased/Acquired Equipment

Cleanscape 1750 Developers Kits (Runs on Linux 7.1)
– PN 1750-KIT-LRH (Cost $16,966 inc support)
Cleanscape LINT-PLUS Static Source Code Analyzer
for C
Red Hat Linux 7.1 (HP Vectra VLi8 800 MHz P3)
Microsoft Visual C++ 6 & 7 (Ver 6 has a scoping
problem in it that 7 corrects) – Gateway P3 1Ghz &
Micron CT 800 MHz respectively

Jovial to C Support EquipmentJovial to C Support Equipment

Red Hat
Linux 7.1

Box

Oberon Proteus

Logic
Analyzer

Windows 2000
Dev Box with
X Windows
Simulator

Unix
X Windows
Terminals

Ethernet
Cable

Microsoft
C/C++

Compiler

HP Unix
C/C++

Compilers

Cleanscape
1750A C
Compiler

HP Color
Laserjet

HP
LaserJet

IMS
FlightSw
Simulator

FCS
Simulator

Atlas Centaur SimulatorAtlas Centaur Simulator
Six Degrees of Freedom (6DOF) SimulatorSix Degrees of Freedom (6DOF) Simulator

Atlas/Centaur Real Time SimulationAtlas/Centaur Real Time Simulation

IM
S V

M
E B

U
S

50HZ Dynamics, Thermal
Model, 2400HZ Gyro, 1200HZ

Accel Models Commands

100HZ & 2400HZ Clocks
IO Controller & Buffer

IMS Flight Software

50HZ Dual Port Memory

FC
S V

M
E B

U
S

Telemetry Display
Control Software

FCS XIO Controller
50HZ Test Clock

FCS Flight Software

HP 744

RTSC IO

MIL-STD-1750A

HP 744

RTSC IO

MIL-STD-1750A

Initial Things That Went Wrong EarlyInitial Things That Went Wrong Early
Project was slated to start with FY02 money
Budget held up in Congress, delaying start of program
Had trouble getting initial STE from SMC Mgmt to
start program
– Project originally allocate $275k for FY02
– 7 Nov 01 – Received emergency $10K to start project
– 14 Nov 01 – SMC Mgmt only allowed .1STE (181 hrs)
– 28 Nov 01 – Received additional $90k of funding
– 13 Dec 01 – Received final $175k for FY02 funding
– Dec 01 – SMC Mgmt only allowed .6 STE (60% of req’d

STE or 1086 hrs)
– Project originally budgeted for 1 STE (1810 hrs)
– Note: Was able to complete project within .7 STE or 1267

hrs (Total effort including final paperwork)

The Bottom Line is: Be CarefulThe Bottom Line is: Be Careful
Review/Identify all potential program delays
– If DoD, be careful on the budget approval cycle
– Are the team members currently available
– Take vacations into account
– Research potential equip availability issues
– Address acquisition delay issues
– Identify all potential single point failures

If using FFRDC’s or outside contractors
– Take into account any people ceilings/restrictions

(available MTE/STE hours and head counts
– Review any clearance issues (e.g., Only Govt personnel

can work on, etc)

Initial Things That Went RightInitial Things That Went Right

We acquired the computers, operating systems,
compilers on schedule
Compilers up and running on schedule (Despite a
disk crash on the Linux machine)
The team members with the required skills were
identified early (Everyone even got along)
Available lab space located
Bottom Line: A safety factor had been added in to
allow for budget approval delays, equip acqusition
delays, computer crashes, and simulator sharing.

EISR Tool SummaryEISR Tool Summary
It is a two pass tool
– It identifies the symbols used in the Jovial .JOV and .CPL

files, looks at their usage, and produces the .C and .H
files.

– Provides graphic representation of functions and formal
arguments

Runs on Windows NT and 2000
Allowed us control and provided insight into our
conversion effort.
– We were warned about overlay problems, macro

conversion problems, and unconstrained array problems,
to name a few.

The tool provided a graphical representation of our
functions and formal parameters.

Re-engineering Approach

• Commercial Off The
Shelf Application

C Source
• Automated Source Code

Generation

• Automated Conversion

JOVIAL to C
Transformation

• User Configured Environment
• Visualization View
• Code Editor View

• Code Segment SelectionLANGUAGE
NEUTRAL

REPRESENTATIONS

• Legacy Source Code Analysis

• Automated Source Parsing and CaptureJOVIAL Source

25

Screenshots - Code Analysis

• Windows NT Based
• Graphical and Text Based Views

• Code
• Segment coupling
• Variable / Data dependency
• Control flow

• Options for View Customization
• Select code artifacts of interest
• Transform selective segments

ReRe--Engineering the Software Engineering the Software
Step 3 Step 3 –– Convert Code/Initial CompileConvert Code/Initial Compile

Convert the 54 Jovial Modules to C
– Took 67 hrs and 20 minutes (Did 5 passes)
– Done by 1 Nov 01 (Prelim schedule had 19 Nov 01)

Did initial compile with Microsoft C++ 6 for all
modules to get major bugs out (Great debugger).
– The Cleanscape compiler did not have clear error

messages/debugging information

Did final compile with Cleanscape cross compiler

At Times We Wanted ToAt Times We Wanted To

Garfield

Destroying

Computer

Cartoon

EISR Tool IssuesEISR Tool Issues
Ver 1.0 yielded error messages with no indication where
the error had occurred (Ver 1.1 corrected this error, but
we were done with this phase by then)
– We used a trial and error method to locate the errors

Jovial arrays start with a 1, so 1st element of array name
would be (name(1)), C arrays start with 0 (name[0]).
The EISR tool ver. 1.0 & 1.1 handled this inconsistently.
Jovial array notation is name(12) whereas C notations is
name[12]. The EISR tool 1.0 & 1.1 handled this
inconsistently.
C requires declarations to be at the beginning of the
module. The EISR tool, Ver 1.0 & 1.1, kept putting the
declarations in the middle of the modules.

EISR Tool Issues Cont’dEISR Tool Issues Cont’d

The EISR tool incorrectly converted the Jovial absolute
operator (abs) which can operate on both type float and integer
numbers to an Integer absolute function in C (abs). A number
of the C absolute operations should have called the C floating
point function fabs. – 16 hrs to work around

The EISR tool failed to include any guarding in the produced
.H files, which it had the wrong extension on (.CPL).
– Guarding though preprocessor directives, prevents things

like multiple variable declarations, etc.
– Example: #ifndef _MODULE1_H

#define _MODULE1_H
// Other stuff
#endif

CleanscapeCleanscape Compiler/Assembler Compiler/Assembler
IssuesIssues

Cleanscape was quick to patch compiler bugs
(usually within 72 hrs)
Compiler documentation shows room for
improvement
Debugging was at command prompt level with
erroneous line number indications
Encountered linker problems due to poor
documentation
We were able to workaround or resolve all
compiler/linker issues with outstanding support
from Cleanscape

Sample of Compiler Errors/ProblemsSample of Compiler Errors/Problems

“Too Many Commons” Prob – 2 Day Delay (Fixed)
– Compiler set incorrect max size less than the 64K word

single block limit
C compiler does not like constants in the R value
(Used define statements to work around)

Compiler had a large number of non-std reserved
words (We changed identifier names)
Compiler had a problem with negative value floating
point numbers (Found to be position dependent in the
code, very unusual problem)

Sample of Language Conversion Sample of Language Conversion
IssuesIssues

Encountered Stack Problems – Orig Jovial/Assem
compiler used Reg 13 for the stack. New
C/Assem compiler used Reg 15.

Encountered Overlay Issues – Jovial directly
supports overlays (where two identifiers can refer
to the same address) . C requires the use of the
union construct (necessitates a more extensive
rewrite of the code).
– We worked around the problem by moving the

variables and arrays that had to be overlayed from the C
and Header files to the Assembly modules

Sample of Language Conversion Sample of Language Conversion
Issues Cont’dIssues Cont’d

Had to author C replacement functions for native
Jovial functions such as: bitset, bitreset, bittest, etc –
took 19 hrs
Had to author C shift functions to replace integrated

Jovial Ones – 19 hrs
We had to highly optimize our code
– 1750A only directly addresses 64K word, though it can

handle up to 16 blocks of 64K words each
– Jovial Based IMS Ver 9 Code was 61,443 Words (max

65,536) – 13,498 Words code & 47,945 Words Data
– C Based IMS Ver 22 Code was 61,407 Words – 13,354

Words Code & 48,053 Words Data

Build Code SummaryBuild Code Summary

Code Data Total
Jovial 13,4989 47,945 61,443
C 13,354 48,053 61,407

Delta C Smaller C Larger C Smaller
by 1.06% .225% .05%
(144 Words) (108 Words) (36 Words)

Linker MapLinker Map

Addresses from
Operational

System Memory
Map

34DB - F003*

344C- 34D9

0040 - 344A*

0000 - 0020

SREL - Global and Static Variables

KREL - Constants
 (Excluding in-line constants)

NREL - Normal User code

IREL (Runtime Initialization Code)

CmdCmd File That Builds Executable ImageFile That Builds Executable Image
;RELOAD50 @cims.cmd
;For Finalbuild1.3 22Jan02
cims -F
0020 -Z ; ZREL (Gen purpose seg) – Mapped to either RAM or ROM
intrvect.rb ; The Interrupts start at 20 (Addresses are in hex)

1500 -I ; IREL (Run-time initialization code) – Mapped to ROM
3500 -K ; KREL (constants excluding in-line ones) – Mapped to ROM
4500 -S ; SREL (Global & Static Var) – Usually mapped to
RAM
9900 -N ; NREL (Normal user code) – Mapped to ROM
start50.rb ; startup object file (req’d)
ctype.rb data50.rb ; runtime-library support files
io50.rb

; Program object files go here
mainmod.rb
initvect.rb
variables.rb
aero.rb ; Contains the INPUT1 and OUTPUT1 routines
A000 -N
dualportmem.rb ; Hardware interface

With Severe Difficulty Assigning With Severe Difficulty Assigning
Absolute Physical Addresses Absolute Physical Addresses
Sometimes We Felt Like ThisSometimes We Felt Like This

Charlie Brown

Tie To Tree

Cartoon

ReRe--Engineering the Software Engineering the Software
Step 4 Step 4 –– Integration TestingIntegration Testing

Atlas/Centaur Real Time Simulator is being used in lieu of
the actual launch vehicle.
Since we had a fully functional 1750A IMS and Flight Ctrl
Sw operating in Jovial/Assembly, we decided to debug the
system at the CSC (Computer Software Component) level
rather than at the unit level.

Problem Types Versus Time

31

178

45

211

119
93

178

855

1082

0

200

400

600

800

1000

1200

Converting
the Code

Xinotech
Conv Probs

Install
Clnscap

Comp, Linux
OS

Compiling &
Linking

Dev C
Unique Code

&
Dev/Debug

Utilities

Stack Error
Problem

Comp Bugs
& Ovrly Prob

Total Of
Tasks on

Left

Tot Time To
Get Code

Run'g

Ti
m

e
(H

rs
)

Time (Hrs)

Sample Performance PlotSample Performance Plot

Sample Performance Plot 2Sample Performance Plot 2

Sample Performance Plot 3Sample Performance Plot 3

Sample Performance Plot 4Sample Performance Plot 4

100 Hz Hw Interrupt Execution Time

0.000

50.000

100.000

150.000

200.000

250.000

300.000

Iterations

M
ic

ro
se

co
nd

s

C Code Time (us)

Jovial Code Time (us)

Step 5 - Replacing Flight Critical Processors
Choices

Power PC 750 IBM
Power PC 603 Motorola
RAD 6000 Harris
RAD 3000 Harris
RH 32 Honeywell

Tool Selection
Compilers
RTOSE

Documentation
(Porting Issues)
Training
Timing and Memory

16 bits word vs. 32 bits word
ASM Mapping (Ints, IO, Timers, Load, Store)

Replacing Flight Critical Processors – Our
Choice

A balance between availability, cost and reliability =
Power PC
– MVME2300 Power PC 603 - $5K
– 750s are around $10K

The tougher part, though interesting, will be mapping
the Assembly instructions.
Green Hills MULTI Development Environment and
optimizing compilers available for Motorola's New
PowerPC 740/750 – C++
– We are currently using this compiler on a different program.

It works well, limited learning curve, so we use it.
– $4,000 for single seat ANSI STD C++ hosted on Linux 7.1

Problems Encountered No One Problems Encountered No One
Thought AboutThought About

We required permission to publish the array offset
tests we ran using Microsoft’s Visual C++ 6 and 7.
Microsoft declined to respond to the fax and
certified letter that we sent to corporate
headquarters.
Had to go to Ed Foster at Infoworld (i.e., Gripline)
to get to the correct person at Microsoft to get the
permission to publish.

SummarySummary

Despite the problems we encountered with the
EISR Conversion Tool and the Cleanscape
Compiler, the project was a success.
Without the re-engineering tool it would have
takes 5430 hrs using 3 people.
Using the tool, we accomplished the
equivalent work in 1082 hrs using 3 people.
That is a 59.78 percent manpower reduction on
a first use (Had a learning curve that does not
have to be repeated.)

Summary Cont’dSummary Cont’d

Though a simulator was used in lieu of the
actual rocket. Delta error between the
simulator and the actual rocket is less than
.006% (measured)
Performance Plots Available Upon Request

When the code conversion When the code conversion
effort goes horribly wrongeffort goes horribly wrong

Delta II

Explosion

AVI File

Contact InformationContact Information

Eric Shulman Voice: (310) 363-2436
SMC/AXEC Fax: (310) 363-2532
Space and Missile Systems Ctr DSN: 833-2436
Los Angeles AFB E-mail(W): eric.shulman@losangeles.af.mil
2420 Vela Way Ste 1467 E-mail(H): ericshul@ieee.org
El Segundo, CA 90245-4611

Backup SlidesBackup Slides

Conversion Between C and Jovial TypesConversion Between C and Jovial Types

ANSI C type Jovial Type ANSI C type Jovial Type
unsigned bitfield B n signed long S 31

signed bitfield N/A void * P

char C char * P C

unsigned char N/A C-type * P Jovial-type

signed char C 7 struct {. . .}[N] TABLE

unsigned short U 15 struct {. . . [N];
[N]}

PARALLEL TABLE

signed short S 15 const N/A

unsigned int U 31 Volatile ABNORMAL

signed int S 31 N/A CONSTANT (that is,
can be placed in ROM)

unsigned long U 31

THE XINOTECH PROGRAMMING ENVIRONMENT

C
SOURCE

CODE
FILES

Structure Charts
& Dependency

Flowgraphs

JOVIAL
SOURCE

CODE
FILES

Graph

Analyzer

L
an

gu
ag

e
G

en
er

at
orP

A
R
S
E
R

Provides
Syntax
Directed
Editing

- Contains Language
Grammers and
Transliteration Rules

-- Grammers Specified
Using XML

Graphical
User Interface

Xinotech Knowledge Xinotech Knowledge
AbstractorAbstractor

Knowledge Abstractor
For JOVIAL to C

Program
Composer

EISR Language Translation TechnologyEISR Language Translation Technology

ACAC--162 11 Oct 2001162 11 Oct 2001
Actual NRO Payload not depictedActual NRO Payload not depicted

T-00:02.4 Engine Start

Atlas booster and sustainer engines are ignited
and undergo checkout prior to liftoff.

T+00:00Launch

The Atlas 2AS rocket, designated AC-162,
lifts off and begins a vertical rise away from
launch pad 36B at Cape Canaveral Air Force

Station, Florida.

T+00:08Roll Program

During vertical ascent, Atlas begins a seven-
second roll maneuver to align itself with proper
flight azimuth. Following the roll, the Centaur

inertial guidance system controls pitch and yaw
programs.

ACAC--162 11 Oct 2001162 11 Oct 2001

T+00:58.8Air-lit SRB Ignition

The remaining two solid rocket boosters strapped
to the Atlas are ignited once onboard computer
software determines the two ground-start SRBs

have burned out, about two seconds earlier.

T+01:12.1Jettison Ground-Lit SRBs

The two spent solid rocket boosters that were
ignited on the ground are jettisoned to fall into

the Atlantic Ocean.

T+01:56.3Jettison Air-Lit SRBs

Computer software will determine the air-start solid
rocket boosters have burned all their propellant and
should be jettisoned from the Atlas vehicle. The two

SRBs will fall into the Atlantic Ocean.

ACAC--162 11 Oct 2001162 11 Oct 2001

T+02:43.8Booster Engine Cutoff

BECO occurs when axial acceleration of 5.0 g is
obtained on the rocket. Sustainer engine

provides the continued boost toward orbit for
the Atlas rocket.

T+02:46.9Jettison Booster Package

The bottom engine structure with the two
booster engine nozzles is separated from the

Atlas vehicle.

T+03:24.1Jettison Payload Fairing

The 14-foot diameter aluminum payload
fairing that protected the NRO payload
during launch is separated once heating

levels drop to predetermined limits.

ACAC--162 11 Oct 2001162 11 Oct 2001

T+04:58.5Sustainer Engine Cutoff

SECO is commanded once minimum residual
propellant is sensed inside the Atlas booster stage.

T+05:00.6Atlas/Centaur Separation

The Atlas booster stage separates from the Centaur
upper stage. Over the next few seconds, the Centaur
engine liquid hydrogen and liquid oxygen systems

are readied for ignition.

T+05:17.1Centaur Engine Start 1

MES 1, the longer of the two Centaur firings
begins to inject the upper stage and NRO

spacecraft into a parking orbit with a perigee of 95
nautical miles and apogee of 490.1 nautical miles

inclined 28.2 degrees.

ACAC--162 11 Oct 2001162 11 Oct 2001
T+09:55.9Centaur Engine Cutoff 1

MECO 1 occurs the Centaur engines are shutdown, arriving in
a planned parking orbit. The vehicle begins a coast period over

the mid-Atlantic before arriving at the required location in
space for the second burn.

T+23:54.2Centaur Engine Start 2

MES 2 occurs over the Atlantic Ocean between the African
Ivory Coast and Ascension Island before the rocket passes
over the equator. The burn lasts until all the Centaur fuel is

used, placing the NRO payload into a geosynchronous transfer
orbit.

T+25:24.3Centaur Engine Cutoff 2

At the point of MECO 2, the Centaur/NRO vehicle should be in
the required transfer orbit with a perigee of 147.9 nautical miles,
apogee of 20,246.4 nautical miles, inclined 26.5 deg. Moments

later, the stage begins aligning to the satellite separation attitude.

ACAC--162 11 Oct 2001162 11 Oct 2001

T+27:24.3Start Spinup

The Centaur's reaction control system thrusters initiate
the required spinup of the NRO satellite to 5 rpm, or 30

degrees per second.

T+29:11.3Spacecraft Separation

The classified payload for the U.S. National
Reconnaissance Office is released into orbit from the
Centaur upper stage to complete the AC-162 launch.

Image and data source: International Launch
Services and Lockheed Martin Astronautics.

