

USER'S MANUAL

Cleanscape FortranLint

SOURCE CODE ANALYZER

 Version 4.3x

Cleanscape Software International

172 College Street, STE A

Spencer, TN 38585

Tel: 931-528-LINT (5468)

E-mail: support@cleanscape.net

Cleanscape FortranLint  USER'S MANUAL

A SOURCE LEVEL CODE ANALYZER

For FORTRAN PROGRAMMING

On UNIX and VMS SYSTEMS

April 2001

Version 4.3x

Note: Licensed users may photocopy for distribution.

Direct comments concerning this manual to the address on the cover page.

Copyright 1987-2001

CLEANSCAPE
NOTICE OF COPYRIGHTS

Copyrighted by Cleanscape as an unpublished work. All rights reserved. In claiming any copyright
protection which may be applicable, Cleanscape reserves and does not waive any other rights that it may
have (by agreement, statutory or common law, or otherwise) with respect to this material. See Notice of
Proprietary Rights.

 NOTICE OF PROPRIETARY RIGHTS

This manual and the material on which it is recorded are the property of Cleanscape. Its use, reproduction,
transfer and/or disclosure to others, in this or any other form, is prohibited except as permitted by a written
License Agreement with Cleanscape. Cleanscape reserves the right to update this document without prior
notification.

FortranLint is a registered trademark of Cleanscape Software International.
Xlint is a trademark of Cleanscape Software International.
SunOS is a registered trademark of Sun Microsystems, Incorporated.
UNIX is a registered trademark of AT&T Bell Laboratories.
DEC, ULTRIX, VAX, and VMS are registered trademarks of Compaq Computer Corporation.

 Table of Contents I

Cleanscape Software FortranLint User’s Manual Version 4.3x

vv
vv

Table of Contents

Table of Contents ___I

1 Introduction __1
1.1 Overview__ 1

2 Getting Started__3
2.1 Installation___ 3
2.2 Analyzing Programs ___ 3
2.3 Managing the Output __ 4

2.3.1 Redirection ___ 4
2.3.2 Statistics Output ___ 4
2.3.3 Summary Mode ___ 5

2.4 Call Trees and Cross Reference Tables ______________________________________ 5

3 Command Reference ___7
3.1 Command-Line Options __ 7

3.1.1 Command Format__ 7
3.1.2 Option Format __ 7
3.1.3 List of Options __ 9
3.1.4 Using UNIX Switches Under VMS _____________________________________ 23

3.2 Summary of Options __ 24
3.2.1 UNIX Option Summary __ 24
3.2.2 VMS Option Summary___ 25

3.3 Configuration Files ___ 27
3.4 Environment Variables / Logicals__ 28

4 FortranLint Source Conventions __________________________________31
4.1 Source Format___ 31

4.1.1 “Debug” Lines___ 32
4.2 Include Files __ 32
4.3 ‘C’ preprocessor (UNIX only) ___ 32
4.4 CDD and DBMS Processing (VMS Only)___________________________________ 33

4.4.1 CDD (Common Data Dictionary) Declarations ____________________________ 33
4.4.2 DBMS Support (FDML Statements) ____________________________________ 33
4.4.3 CDD/DBMS Requirements ___ 33

4.5 FORTRAN 77 Extensions__ 34
4.6 Fortran 90/95 Extensions __ 35
4.7 Specifying FORTRAN Dialect __ 35
4.8 Default Sizes __ 35
4.9 High Performance Fortran (HPF) __ 36

5 Controlling Analysis __37
5.1 Setting the Scope___ 37
5.2 Message Classification __ 37
5.3 Selecting Analysis Level___ 38
5.4 Suppressing Individual Messages __ 39
5.5 Portability Checking __ 40

II Table of Contents

Cleanscape Software FortranLint User’s Manual Version 4.3x

6 Analysis Output __41
6.1 Overview___ 41
6.2 Summary Mode__ 42
6.3 Analysis Output__ 42

6.3.1 Options and Filenames ___ 42
6.3.2 Source Listing__ 42
6.3.3 Diagnostic Messages __ 43

6.4 Statistics Output ___ 43
6.5 Exit Status __ 45

7 Call Trees ___47
7.1 Overview___ 47
7.2 Tree Options __ 47

7.2.1 Arguments __ 48
7.3 Call Tree Format ___ 49

7.3.1 Trimmed Trees ___ 49
7.3.2 Condensing Multiple Calls __ 50
7.3.3 Sorting Alphabetically ___ 51
7.3.4 Squished Trees ___ 52
7.3.5 Graphic Character Set__ 52

7.4 Call Tree Content __ 53
7.4.1 Top Node ___ 53
7.4.2 Undefined Routines ___ 53
7.4.3 Library Routines__ 54

7.5 Recursion __ 54
7.6 Dummy Routines __ 54
7.7 Entry Points___ 54
7.8 Fortran 90 Internal Subprograms __ 56

8 Cross Reference __58
8.1 Overview___ 58
8.2 Layout ___ 59

8.2.1 Program Routines ___ 59
8.2.2 Block Data Routines___ 60
8.2.3 Subroutines and Functions __ 60
8.2.4 Modules (F90 only) ___ 60
8.2.5 Common Blocks __ 61
8.2.6 Structures and Structure Components ___________________________________ 61
8.2.7 Variables, Arrays, and Records __ 61
8.2.8 Parameters __ 63
8.2.9 Equivalences___ 63
8.2.10 High Performance Fortran (HPF)______________________________________ 63

8.3 Format Selection ___ 63
8.4 Content Selection __ 65

9 Library Support__71
9.1 Overview___ 71
9.2 Writing Library Shell Files ___ 72
9.3 Creating Library Template Files ___ 74
9.4 Library Precedence ___ 75
9.5 Miscellaneous Library Issues ___ 76

9.5.1 Interaction with Cross Reference and Call Trees ___________________________ 76
9.5.2 File Format __ 76

 Table of Contents III

Cleanscape Software FortranLint User’s Manual Version 4.3x

10 Database Files___77
10.1 Overview __ 77
10.2 Creating Database Files ___ 77
10.3 Using Database Files ___ 78
10.4 Using FDB files as libraries.__ 78

11 Xlint Introduction ___79
12 Learning About Xlint __81

12.1 Screen Layout __ 81
12.2 File Menu ___ 83
12.3 Search Menu ___ 83
12.4 Build Menu __ 83
12.5 Source Window___ 84
12.6 Lint Window ___ 85
12.7 Tree Window___ 86
12.8 Cross Reference Window ___ 86
12.9 Control Panel___ 87
12.10 Mouse Functions ___ 88

13 Database Files and Xlint __89
13.1 Overview__ 89
13.2 Loading Database Files ___ 89
13.3 Rebuilding Database Files under Xlint _____________________________________ 90

14 Xlint: Getting Started __91
14.1 Configuration Setup ___ 91
14.2 Running Xlint __ 91
14.3 Sample Sessions __ 92

15 More About Xlint__95
15.1 Resizing Windows __ 95
15.2 Window Interaction__ 95
15.3 Command-Line Options __ 96
15.4 Advanced Example __ 96

16 Resource Files___99
16.1 Overview__ 99
16.2 Xlint and XLINT.DAT ___ 99

Appendix A Installation Under UNIX ______________________________103
A.1 Pre-installation ___ 103
A.2 Installation Procedure__ 103
A.3 Activation Procedure __ 106
A.4 Patching FortranLint __ 107

Appendix B Installation Under VMS _______________________________109
B.1 Pre-installation ___ 109
B.2 Installation Procedure__ 109
B.3 Activation Procedure __ 111
B.4 Patching FortranLint___ 113

IV Table of Contents

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix C License Manager _____________________________________115
C.1 License Manager Commands ___ 115

C.1.1 User Commands __ 115
C.1.2 Administrative Commands __ 116
C.1.3 License Manager Options (at daemon startup only) _______________________ 117

Appendix D Sample Output: Fortran 90 ____________________________119
D.1 Sample Fortran 90 Program __ 119
D.2 Analysis Output__ 120
D.3 Statistics Output ___ 123
D.4 Call Tree ___ 123
D.5 Freeform Cross Reference__ 124
D.6 Tabular Cross Reference___ 126

Appendix E Sample Output: FORTRAN 77 _________________________129
E.1 Sample FORTRAN 77 Program ___ 129
E.2 Analysis Output __ 130
E.3 Statistics Output__ 133
E.4 Call Tree ___ 134
E.5 Freeform Cross Reference __ 134
E.6 Tabular Cross Reference ___ 136

Appendix F Diagnostic Messages __________________________________139
F.1 Format__ 139

Appendix G Performance __141
G.1 Disk Space __ 141

G.1.1 Program Size ___ 141
G.1.2 Temporary Files___ 141

Appendix H Xlint Installation Under UNIX _________________________143
H.1 Pre-installation ___ 143
H.2 Installation Procedure__ 143
H.3 Activation Procedure__ 145

Appendix I Xlint Installation Under VMS ___________________________147
I.1 Pre-installation ___ 147
I.2 Installation Procedure __ 147
I.3 Activation Procedure __ 149

 1. Introduction 1

Cleanscape Software FortranLint User’s Manual Version 4.3x

1
vv
vv

Introduction

1.1 Overview

FortranLint is a programming tool that simplifies the debugging and maintenance
of FORTRAN 77, Fortran 90, and Fortran 95 programs.

FortranLint includes a source code analyzer that can detect a wide range of
potential problems, including:

• Inappropriate arguments passed to functions

• Inconsistencies in common block declarations

• Non-portable code

• Type usage conflicts across different subprograms/program units

• Unused functions, subroutines, and variables

• Variables that are referenced but not set

FortranLint can be used to:

• Check source files before they are compiled

• Isolate obscure problems

• Identify problems before debugging is required

• Map out unfamiliar programs

• Enforce programming standards

The diagnostic messages produced by FortranLint are more detailed than those
produced by standard compilers, and cover a wider range of problems.
FortranLint analyzes source files both individually and as a group, and can
therefore identify problems that are beyond the scope of a compiler.

2 1. Introduction

Cleanscape Software FortranLint User’s Manual Version 4.3x

 2. Getting Started 3

Cleanscape Software FortranLint User’s Manual Version 4.3x

2
vv
vv

Getting Started

2.1 Installation

For installation instructions, see Appendix A (under Unix), Appendix B (under
VMS), or the separate NTFLINT Quick Start Guide (under Windows).

2.2 Analyzing Programs

To run FortranLint, use a command of the form:

 flint -options file1.f file2.f file3.f under UNIX
or
 flint /options file1.for file2.for file3.for under VMS

where options may be one or more options, and each of the specified files is a
FORTRAN source file containing any number of FORTRAN program units.
Options may be intermixed with or appear after file names.

If FortranLint is invoked without any options or parameters, a “help” screen will
be displayed:

 flint

If source files are specified, but no options are given, FortranLint will perform a
basic analysis of the source files and output the results to the console.

For example, to analyze a single source file, use a command of the form:

 flint demo.f under UNIX
or
 flint demo.for under VMS

The following commands will perform a more detailed analysis:

 flint -fgs demo.f under UNIX
or
 flint /FYI /GLOBAL /STATISTICS demo.for under VMS

4 2. Getting Started

Cleanscape Software FortranLint User’s Manual Version 4.3x

2.3 Managing the Output

When FortranLint is used on a large program for the first time, it may report
hundreds or thousands of inconsistencies. FortranLint has several features that
simplify management of the output.

2.3.1 Redirection

The command-line option “-Sname” (under UNIX) or “/SPLIT=name” (under
VMS) will cause FortranLint to redirect output from the console to the following
files:

Under UNIX:

Analysis output name.lnt
Statistics (-s) name.stt
Call tree (-t) name.tre
Cross-reference (-x) name.xrf

Under VMS:

Analysis output name.lnt
Statistics (/STATISTICS) name.stt
Call tree (/TREE) name.tre
Cross-reference (/XREF) name.xrf

For example, the following commands will analyze demo.f (or demo.for), send
analysis output to demo.lnt, and send statistics output to demo.stt:

 flint -fgs demo.f -Sdemo under UNIX
or
 flint /FYI /GLOBAL /STAT demo.for /SPLIT=demo under VMS

2.3.2 Statistics Output

The command-line option “-s” (under UNIX) or /STATISTICS (under VMS)
enables statistics and related output.

If this option is used, FLINT displays a screen after analysis is completed which
includes I/O statistics, structural statistics (subroutine counts, etc.) and a list of the
error messages, which occurred most frequently in the source code.

 2. Getting Started 5

Cleanscape Software FortranLint User’s Manual Version 4.3x

2.3.3 Summary Mode

The command-line option “-+” (under UNIX) or /SUMMARY (under VMS)
combines three operations:

(a) This option displays a progress meter that tracks the progress of

FortranLint in real time.

(b) It redirects FortranLint output (as explained in section 2.3.1).

By default, “-+” (or /SUMMARY) redirects the output to files named
flint.lnt, flint.tre, etc. “-S” (or /SPLIT) may be used to specify a
different base name.

(c) It displays an error-message summary (as described in section 2.3.2).

For example, the following commands will analyze demo.f (or demo.for), display
a progress meter, send analysis output to flint.lnt, and display an error-message
summary after analysis is completed:

 flint -fg+ demo.f under UNIX
or
 flint /FYI /GLOBAL /SUMMARY demo.for under VMS

2.4 Call Trees and Cross Reference Tables

FortranLint will optionally generate a diagram of program structure (i.e., a “call
tree”) and a symbol-table cross-reference.

For example, the following commands will analyze demo.f (or demo.for), output a
call tree to the file demo.tre, and output a cross-reference to the file demo.xrf:

 flint -tx demo.f -Sdemo under UNIX
or
 flint /TREE /XREF demo.for /SPLIT=demo under VMS

For additional information on call trees, see chapter 7. For additional information
on cross-reference tables, see chapter 8.

6 2. Getting Started

Cleanscape Software FortranLint User’s Manual Version 4.3x

 3. Command Reference 7

Cleanscape Software FortranLint User’s Manual Version 4.3x

3
vv
vv

Command Reference

3.1 Command-Line Options

3.1.1 Command Format

To run FortranLint, use the command flint, followed by zero or more option
switches and one or more file names:

 flint [options] [file1 [file2...]] [file3.lbt...] [file4.fdb...]

“file1 file2...” are FORTRAN source files. “.lbt” files are optional call-interface
library files (explained in chapter 9). “.fdb” files are optional Xlint database files
(explained in chapter 13).

If no options or file names are specified, flint will display a “help” screen.

FORTRAN source files may use any valid FORTRAN filename extension. “.f” is
a special case; under UNIX, if a source file has the “.f” extension, FortranLint will
run the ‘C’ preprocessor on the file before analyzing it.

Option switches may be specified in any order, and may be intermixed with
filename arguments.

3.1.2 Option Format

Under UNIX, options are specified by single-character switches; for example,
“-x”. Lower-case options take no arguments, and may be combined into a single
switch. For example, “-stx” is equivalent to “-s -t -x”. Upper-case options require
one or more arguments; these options cannot be combined.

Arguments are specified for UNIX switches as follows:

 -P argument single- argument switches
or
 -P arg1,arg2,arg3,... multi- argument switches

8 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

Under VMS, options are specified by “word” switches (for example, /XREF).
“Word” switches are not case-sensitive. They may be abbreviated, provided that
the abbreviations are unique. For example, /XREF is an abbreviation for
/XREFERENCE.

Arguments are specified for VMS switches as follows:

 /PORT=argument single- argument switches
or
 /PORT=(arg1,arg2,arg3,...) multi- argument switches

Note: Under VMS, switches should not include spaces.

Switch arguments are cumulative. For example, under UNIX, the following
commands are equivalent:

 flint -O 123 -O 200,375 foo.f
 flint -O 123,200,375 foo.f

Under VMS, these commands are equivalent:

 flint /SUPPRESS=123 /SUPPRESS=(200,375) foo.for
 flint /SUPPRESS=(123,200,375) foo.for

To disable an option under UNIX, add an extra dash to the option switch. For
example, “-w” enables warning messages and “--w” disables them.

To disable an option under VMS, add the word “NO” to the option switch. For
example, /WARN enables warning messages and /NOWARN disables them.

When an option is disabled, arguments accumulated up to that point are discarded.
If the option is re-enabled subsequently, it “starts over”.

For example, under UNIX, the following commands are equivalent:

 flint -P ANSI,CRAY --P -P SGI foo.f
 flint -P SGI foo.f

Under VMS, these commands are equivalent:

 flint /PORT=(ANSI,CRAY) /NOPORT /PORT=SGI foo.for
 flint /PORT=SGI foo.for

Configuration files may be used to set default values for options. The FortranLint
package includes a predefined configuration file named flint.cfg; for additional
information, see section 3.3.

 3. Command Reference 9

Cleanscape Software FortranLint User’s Manual Version 4.3x

3.1.3 List of Options

FortranLint options are listed below:

-a, /ANSI

Description: Reports non-ANSI constructs. If FortranLint is run in
FORTRAN 77 mode, this switch has the same effect as

 “-P ansi77” (or /PORT=ansi77).

 If FortranLint is run in Fortran 90/95 mode, this switch has

the same effect as “-P ansi90” (or /PORT=ansi90).

 Note: To set the language mode, use the -7, -9 and/or

/LANG switches.

UNIX syntax: -a

VMS syntax: /ANSI

-B, /DATABASE=

Description: Creates a specified database (.fdb) file. FortranLint and Xlint
use database files to regenerate call trees, cross-reference
tables, and diagnostic messages. For additional information
on database files, see chapter 13.

Note: FortranLint adds the “.fdb” filename extension auto-
matically.

UNIX syntax: -B file

VMS syntax: /DATABASE=file

-d, /DLINES

Description: Source lines starting with “D” in column one (or “Y”, for
EPC code) are “debug” lines.

 By default, “debug” lines are treated as comment lines. If “-

d” (or /DLINES) is specified, FortranLint will process
“debug” lines along with normal source code.

 Note: This option is valid only for fixed-form code.

UNIX syntax: -d

VMS syntax: /DLINES

10 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

-D

Description: (UNIX only.) Defines symbols for the ‘C’ preprocessor.

Applies only if source files are preprocessed (“.f” filename
extension or “-p” option).

For additional information, see section 4.3.

UNIX syntax: -D symbol[=value],...

VMS syntax: N/A

-e, /EXTEND

Description: By default, if the source format is fixed form, characters past
column 72 are ignored. If this option is specified, the source-
line width is extended to 132 columns.

For additional information, see section 4.1.

UNIX syntax: -e

VMS syntax: /EXTEND

-E, /FILES=

Description: Reads a specified file and adds its contents to the FortranLint
command line.

 The file may contain source-file names and/or command-line

option switches. Entries may be separated by commands,
new lines, or spaces, and may be specified in any order.

 Nested expansions are allowed, i.e., the specified file may use

the “-E” (or /FILES) option to process lower-level files.

 Wildcards are not supported. I.e., the specified file cannot

include entries of the form *.for

This option cannot be suppressed, i.e., “--E” and
/NOFILES are not supported.

For additional information, see section 3.3.

UNIX syntax: -E file,...

VMS syntax: /FILES=(file,...)

 3. Command Reference 11

Cleanscape Software FortranLint User’s Manual Version 4.3x

/FORM=

See “-R”.

-f, /FYI

Description: Enables FYI (or “for your information”) diagnostics.

FYI diagnostics are informational messages that may (or may
not) indicate problems.

UNIX syntax: -f

VMS syntax: /FYI

-g, /GLOBAL

Description: Global analysis. This option is strongly recommended.

By default, subprograms are processed on an individual basis,
and call interface checking is not performed. The “-g” (or
/GLOBAL) option enables “global” analysis. If this option is
used, FortranLint checks for inconsistencies between
subprograms; for example, invalid arguments or common-
block problems. This option also improves usage checking
and enhances cross-reference output.

UNIX syntax: -g

VMS syntax: /GLOBAL

-i, /INCLUDE

Description: Expands INCLUDE files in source listings. This option
applies only when source listings are enabled (see “-l” or
/LISTING).

UNIX syntax: -i

VMS syntax: /INCLUDE

12 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

-I, /PATH=

Description: Adds one or more directories to the include-file search list.
This switch affects both INCLUDE files and “#include”
files.

For additional information, see sections 4.2 and 4.3.

UNIX syntax: -I path,...

VMS syntax: /PATH=([path],...)

Example: -I ../myftn,/usr/sam/headers under UNIX

 /PATH=([FTNCODE],[USR.HEADERS]) under VMS

/IMPLICIT

See “-m”.

/LANG=

See “-7” and “-9”.

-l, /LISTING

Description: Outputs a source listing with line numbers.

UNIX syntax: -l (lower-case ell)

VMS syntax: /LISTING

-L, /LIBRARY=

Description: Creates or updates a library template file.

This option adds interface information for the current source
files to the specified library template (or “.lbt”) file. “.lbt”
files may be used to speed up subsequent runs. For additional
information, see chapter 9.

Note: This option causes FortranLint to run in a special
mode, bypassing normal analysis. Consequently, input files
must be free of errors before this option is used.

UNIX syntax: -L file.lbt

VMS syntax: /LIBRARY=file.lbt

 3. Command Reference 13

Cleanscape Software FortranLint User’s Manual Version 4.3x

Example: flint -L vmslib.lbt vmslib.lsh under UNIX

 flint /LIBRARY=mylib.lbt mylib.for under VMS

/LPP=

See “-Y”.

-m, /IMPLICIT

Description: Reports the use of implicit data typing.

UNIX syntax: -m

VMS syntax: /IMPLICIT

-M, /MISC= (F90 only)

Description: Miscellaneous options:

ansi_maxloc Modifies the rules used for HPF checking.

For additional information, see section 4.9.

depend If this sub-option is specified, Fortran 90

source file order is irrelevant. Note: This sub-
option adds an extra pass, which reduces
processing speed slightly.

depend:filename

FortranLint will output the sorted file list and
the file dependencies via USE association to
the specified file. The filename extension
“.dep” is added automatically.

If the source files are in order, depend is not
required.

help Outputs a “help” screen describing these sub-

options.

hpf Enables HPF checking. For additional

information, see section 4.9.

noexit For UNIX users who use shell scripts to check

FortranLint results. This sub-option tells
FortranLint to return zero unless errors were
detected.

14 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

uselbt Modifies the precedence rules used for library
template (.lbt) files. For additional
information, see section 9.3.

UNIX syntax: -M option,...

VMS syntax: /MISC=(option,...)

/NOI4

See “-2”.

-O, /SUPPRESS=

Description: Disables or enables individual diagnostic messages.

UNIX syntax: -O msg#,msg#,... disables messages by number
 -O +msg#,+msg#,... enables messages by number

 -O all disables all numbered messages
 -O +all enables all numbered messages

 -O msg#,+msg#,... disable/enable can be mixed

VMS syntax: /SUPPRESS=(msg#,...) disables messages by number
 /SUPPRESS=(+msg#,...) enables messages by number

 /SUPPRESS=ALL disables all numbered messages
 /SUPPRESS=+ALL enables all numbered messages

 disable/enable can be mixed
 /SUPPRESS=(msg#,+msg#,...)

/OUTPUT=

Description: (VMS only.) Redirects output to a specified file.

 Note: Under UNIX, use standard-I/O redirection
 (flint ... > foo.out).

UNIX syntax: N/A

VMS syntax: /OUTPUT=file

See also: -S or /SPLIT

 3. Command Reference 15

Cleanscape Software FortranLint User’s Manual Version 4.3x

-p

Description: (UNIX only.) Sends all source files through the ‘C’
preprocessor.

Note: FortranLint sends files with the “.F” filename
extension through the ‘C’ preprocessor, whether or not the
“-p” option is selected.

UNIX syntax: -p

VMS syntax: N/A

-P, /PORT=

Description: Checks for portability issues related to one or more compilers
or FORTRAN dialects.

Supported environments include:

ANSI77 (FORTRAN 77) EPC
ANSI90 (Fortran 90) HPUX
CRAY LAHEY (Windows/Linux)
DECNT (Compaq Windows) SGI
DECUNIX SUN
DECVMS VAXULTRIX

For additional information, see sections 4.5 through 4.7.

UNIX syntax: -P system,...

VMS syntax: /PORT[ABILITY]=(system,...)

-q, /QUIT

Description: This option is related to FortranLint ’s license manager (see
Appendix C). By default, FortranLint waits for a free license,
if none is available. If “-q” (or /QUIT) is specified,
FortranLint terminates immediately, in this case.

UNIX syntax: -q

VMS syntax: /QUIT

-R, /FORM=

Description: When Fortran 90 sources are processed, FortranLint normal-

ly determines the source format (fixed or free) based on the
filename extension. “-R” (or /FORM) may be used to
specify the source format explicitly. For additional
information, see section 4.1.

16 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

Note: This option does not apply to FORTRAN 77 code.

UNIX syntax: -R fixed Specifies fixed form
 -R free Specifies free form

VMS syntax: /FORM=fixed Specifies fixed form
 /FORM=free Specifies free form

-s, /STATISTICS

Description: Enables statistics and related output. If this option is used,

FLINT displays a screen after analysis is completed which
includes I/O statistics, structural statistics (subroutine counts,
etc.) and a list of the error messages that occurred most
frequently in the source code.

UNIX syntax: -s

VMS syntax: /STATISTICS

See also: -+ (or /SUMMARY)

-S, /SPLIT=

Description: Sends FortranLint output to a group of text files.

If this option is used, FortranLint stores its output as follows:

Analysis output name.lnt
Statistics (/STATISTICS) name.stt
Call tree (/TREE) name.tre
Cross-reference (/XREF) name.xrf

Where name is specified by “-S name” (under UNIX) or
“/SPLIT=name” (under VMS).

UNIX syntax: -S name

VMS syntax: /SPLIT=name

See also: -+ (or /SUMMARY)

/SUMMARY

See “-+” at the end of this list.

 3. Command Reference 17

Cleanscape Software FortranLint User’s Manual Version 4.3x

/SYSTEM=

See “-V”.

-t, /TREE

Description: Generates a “call tree”; i.e., a structural diagram of the “call”

structure used by the source code. For call-tree format
options, see “-T” or /TREE. For additional information on
call trees, see chapter 7.

UNIX syntax: -t

VMS syntax: /TREE

See also: -T

-T, /TREE=

Description: Sets call-tree sub-options and generates a call tree. (The

“help” sub-option is a special case.)

The following sub-options are supported:

alphabetical FortranLint normally displays sub-trees using

the order in which routines were called. If
alphabetical is used, sub-trees are displayed
in alphabetical order. alphabetical may be
abbreviated to alpha.

To restore the default mode of operation, use
“-T noalpha” (or /TREE=noalpha).

condensed Merges multiple calls to the same routine. To

restore the default mode of operation, use
 “-T nocondensed” (or

/TREE=nocondensed).

graphics=xxx Changes the graphics characters used to print

the call tree. For additional information, see
section 7.3.5.

head:symbol Generates a call tree starting at the specified

symbol.

help Displays a “help” screen describing the call-tree

options. No processing is done, if this sub-
option is selected.

18 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

nolibrary Suppresses calls to routines defined in
libraries (i.e., “.lbt” files). For additional
information, see section 7.4.3 and chapter 9.

noundefined Suppresses calls to undefined routines.

squish To improve readability, FortranLint normally

adds extra white space to call trees. “squish”
removes the extra space.

To restore the default mode of operation, use
“-T nosquish” (or /TREE=nosquish).

trim This sub-option merges redundant sub-trees
to reduce the size of the output.

The configuration file shipped with
FortranLint enables trim, by default. To
disable this option, use “-T notrim” (or
/TREE=notrim).

“trim” is strongly recommended for
systems that are low on disk space.

For additional information on call trees, see
chapter 7.

UNIX syntax: -T option,...

 Note: To set call-tree options without generating a call tree,

use -T option,... followed by “--t”.

VMS syntax: /TREE=(option,...)

 Note: To set call-tree options without generating a call tree,

use /TREE=(option,...) followed by “--t”.

-u, /USAGE

Description: Enables variable usage checking. For example, this feature

detects variables that are referenced, but not set.

The configuration file shipped with FortranLint enables this
option, by default. If usage checking is not required for a
given project, “--u” (or /NOUSAGE) may be used to
disable this option. Some operations will be slightly faster if
usage checking is disabled.

UNIX syntax: -u

VMS syntax: /USAGE

 3. Command Reference 19

Cleanscape Software FortranLint User’s Manual Version 4.3x

/UNIXHELP

See “-?” at the end of this list.

-V, /SYSTEM=

Description: FortranLint normally assumes that the FORTRAN compiler

running on the host system will be used. To select a different
environment, use this option.

 “-V” (or /SYSTEM) tells FortranLint to assume that a
specific compiler (or FORTRAN dialect) will be used.

This allows FortranLint to resolve ambiguous extensions
(constructs that look similar, but are handled differently in
different environments).

Supported environments include:

ANSI77 (FORTRAN 77) EPC
ANSI90 (Fortran 90) HPUX
CRAY LAHEY (Windows/Linux)
DECNT (Compaq Windows) SGI
DECUNIX SUN
DECVMS VAXULTRIX

For additional information, see sections 4.5 through 4.7.

UNIX syntax: -V system

VMS syntax: /SYSTEM=system

-w, /WARNINGS

Description: Enables “warning” messages.

The configuration file shipped with FortranLint enables this
option, by default. To disable warnings, use --w (or /NO-
WARNINGS).

UNIX syntax: -w

VMS syntax: /WARNINGS

20 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

-W, /WIDTH=

Description: Sets output width in columns. This option affects all output,

including diagnostic messages and cross-reference tables.

Any value between 40 and 500 may be used. Under UNIX,
the default width is 80 columns. Under VMS, the default
width is 80 columns unless /OUTPUT is used; in this case,
the default width is 132 columns.

UNIX syntax: -W number

VMS syntax: /WIDTH=number

-x, /XREF

Description: Generates a cross-reference table. For cross-reference format
options, see “-X” or /XREF. For additional information on
cross-reference tables, see chapter 8.

UNIX syntax: -x

VMS syntax: /XREF or /XREFERENCE

-X, /XREF=

Description: Sets cross-reference sub-options and generates a cross-
reference table.

The following sub-options are supported:

freeform Selects a compact variable-width format. This

is the default setting.

tabular Selects a fixed-width (132 column) format.

linenumbers Locations by line numbers rather than by

subprogram.

noequiv By default, the cross-reference entry for a

given variable includes usage information for
the associated equivalences, whether or not
the variable is used directly. noequiv
suppresses equivalence usage information.

nolegend Suppresses the legend that describes line

number usage codes.

 3. Command Reference 21

Cleanscape Software FortranLint User’s Manual Version 4.3x

filters FortranLint supports cross-reference filters.
Filters may be used to generate cross-
reference tables for items that meet specific
constraints. For additional information, see
sections 8.3 and 8.4.

 For additional information on cross-reference tables, see

chapter 8.

UNIX syntax: -X option,...

 Note: To set cross-reference options without generating a

cross-reference, use “-X option,...” followed by “--x”.

VMS syntax: /XREF[ERENCE]=(option,...)

 Note: To set cross-reference options without generating a

cross-reference, use /XREF=(option,...) followed by “--x”.

-Y, /LPP=

Description: Sets lines per output page. To disable pagination, use a page
length of zero.

The default value is zero for console output and 60 lines per
page if “-S”, “-+”, /OUTPUT, /SPLIT, and/or
/SUMMARY are used to redirect output.

UNIX syntax: -Y number

VMS syntax: /LPP=number

-2, /NOI4

Description: On most systems, integers and logicals are four bytes long, by
default.

If “-2” (or /NOI4) is used, FortranLint interprets
INTEGER and LOGICAL as INTEGER*2 and
LOGICAL*2. Additionally, integer and logical constants are
treated as two-byte values unless they are too large to fit into
the smaller size.

UNIX syntax: -2

VMS syntax: /NOI4

22 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

-7, /LANG=
-9

Description: This option may be used to specify the input language
(FORTRAN 77 or Fortran 90/95).

UNIX syntax: -7 Selects FORTRAN 77
 -9 Selects Fortran 90/95

VMS syntax: /LANG=F77 Selects FORTRAN 77
 /LANG=F90 Selects Fortran 90/95

-+, /SUMMARY

Description: The command-line option “-+” (under UNIX) or
/SUMMARY (under VMS) combines three operations:

(a) This option displays a progress meter that tracks the

progress of FortranLint in real time.

(b) It redirects FortranLint output (as explained in section

2.3.1).

By default, “-+” (or /SUMMARY) redirects the output
to files named flint.lnt, flint.tre, etc. “-S” (or /SPLIT)
may be used to specify a different base name.

(c) It displays an error-message summary (as described in

section 2.3.2).

UNIX syntax: -+

VMS syntax: /SUMMARY

-?, /UNIXHELP

Description: (VMS only.) Displays FortranLint ’s “letter” option switches.

This option is not supported under UNIX. To display the
“letter” switches under UNIX, execute flint with no
parameters.

For additional information, see section 3.1.2.

UNIX syntax: N/A

VMS syntax: -? or /UNIXHELP

 3. Command Reference 23

Cleanscape Software FortranLint User’s Manual Version 4.3x

3.1.4 Using UNIX Switches Under VMS

FortranLint ’s “letter” option switches (-letter) can be also used under VMS.

“Letter” switches can be used inside flint configuration files with no special rules
or restrictions. However, if “letter” switches are used on the VMS command line,
three rules apply:

(a) “letter” switches do not include white space

(b) “letter” switches are limited to one argument per switch

(c) upper-case switches must be double-quoted

For example, the following VMS flint commands are equivalent:

 flint /PORT=sgi foo.for
 flint “-Psgi” foo.for

To specify multiple arguments for a “letter” switch on the VMS command line,
use multiple copies of the switch. For example, the following commands are
equivalent:

 flint /TREE=(condensed,nolibrary) foo.for
 flint “-Tcondensed” “-Tnolibrary” foo.for

As under UNIX, lower-case “letter” options may be combined into a single
switch. For example, the following commands are equivalent:

 flint /IMPLICIT /XREF /NOI4 foo.for

 flint -mx2 foo.for

Additional VMS examples:

1) flint /IMPLICIT foo.for

 flint -m foo.for

2) flint /SPLIT=result /WARNINGS /WIDTH=50 foo.for

 flint “-Sresult” -w “-W50” foo.for

3) flint /ANSI /FYI /GLOBAL /SUPPRESS=(201,202) foo.for

 flint -afg “-O201” “-O202” foo.for

24 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

3.2 Summary of Options

3.2.1 UNIX Option Summary

Source configuration options:

 -d Process “debug” lines
 -e Extend source width to 132 columns
 -I path,... Set search path for INCLUDE files
 -p Send source files through preprocessor (CPP)
 -R form Specify Fortran 90/95 source form
 -V system Specify FORTRAN dialect
 -2 Two-byte integers and logicals
 -7 Select FORTRAN 77
 -9 Select Fortran 90/95

Diagnostic options:

 -a Report non-ANSI constructs
 -f Report FYI messages
 -g Enable global processing
 -m Report implicit typing
 -O number,... Suppress individual error messages
 -P system,... Enable portability checking
 -u Check data usage
 -w Enable warnings

Cross-reference options:

 -x Generate cross-reference table
 -X option,... Specify cross-reference sub-options

Call tree options:

 -t Generate “call tree”
 -T option,... Specify “call tree” options

Output format options:

 -I Expand INCLUDE files
 -l Generate source listing
 -W number Set output page width
 -Y number Set output page length

 3. Command Reference 25

Cleanscape Software FortranLint User’s Manual Version 4.3x

Other output control options:

 -+ “Progress/summary” mode (implies -S)
 -B file Create database (.fdb) file
 -L file Create library (.lbt) file
 -s Generate statistics
 -S file Split output and redirect it

Miscellaneous options:

 -D definition,... Define preprocessor-level symbols
 -E file Expand configuration file
 -M option,... Miscellaneous options
 -q Quit if no licenses are available

3.2.2 VMS Option Summary

Source configuration options:

 /DLINES Process “debug” lines
 /EXTEND Extend source width to 132 columns
 /FORM=form Specify Fortran 90/95 source form
 /LANG=language Specify language (F77 or F90/95)
 /NOI4 Two-byte integers and logicals
 /SYSTEM=system Specify FORTRAN dialect
 /PATH=([path],...) Set search path for INCLUDE files

Diagnostic options:

 /ANSI Report non-ANSI constructs
 /FYI Report FYI messages
 /GLOBAL Enable global processing
 /IMPLICIT Report implicit typing
 /PORT=(system,...) Enable portability checking
 /SUPPRESS=(number,...) Suppress individual error messages
 /USAGE Check data usage
 /WARNINGS Enable warnings

Cross-reference options:

 /XREF Generate cross-reference table
 /XREF=(option,...) Specify cross-reference sub-options

26 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

Call tree options:

 /TREE Generate “call tree”
 /TREE=(option,...) Specify “call tree” sub-options

Output format options:

 /INCLUDE Expand INCLUDE files
 /LIST Generate source listing
 /LPP=number Set output page length
 /WIDTH=number Set output width

Other output control options:

 /DATABASE=file Create database (.fdb) file
 /LIBRARY=file Create library (.lbt) file
 /OUTPUT=file Redirect output to a specified file
 /SPLIT=file Split output and redirect it
 /STATISTICS Generate statistics
 /SUMMARY “Progress/summary” mode (implies /SPLIT)

Miscellaneous options:

 /FILES=file Expand configuration file
 /MISC=(option,...) Miscellaneous options
 /QUIT Quit if no licenses are free
 /UNIXHELP or -? Display UNIX “letter” options

 3. Command Reference 27

Cleanscape Software FortranLint User’s Manual Version 4.3x

3.3 Configuration Files

Command-line arguments may be specified indirectly, using text files.

If bar.txt is a text file containing option switches or filenames, the following
commands will add the contents of bar.txt to the FortranLint argument list:

 flint -E bar.txt foo.f under UNIX
or
 flint /FILE=bar.txt foo.for under VMS

bar.txt may specify any number of switches or filenames. There are two
restrictions:

(a) Arguments must be separated by white space or new lines

(b) Under UNIX, wildcards (such as *.for) are not supported

Files used this way are called configuration files.

FortranLint may be used for multiple purposes: quick syntax checks, mapping out
unfamiliar programs, etc. Configuration files are a convenient way to select
different sets of options.

To set FortranLint options automatically, create a configuration file named
flint.cfg and add option switches to this file.

FortranLint searches for flint.cfg in the following directories:

(a) Current working directory

(b) Directories specified by the environment variable FLINTCFG (under

UNIX) or logical FLINTCFG (under VMS)

(c) FortranLint installation directory, as specified by the environment
variable FLINTHOME (under UNIX) or logical FLINTHOME
(under VMS)

Note: Command-line option switches may be used to override options set by
flint.cfg.

Multiple configuration files may be used; e.g., for different projects. FLINTCFG
should be set appropriately for users working on each project.

For additional information on FLINTCFG and FLINTHOME, see section 3.4.

FortranLint does not impose a fixed limit on configuration-file line length.
However, system constraints may impose a limit of 1,024 characters per line for
some environments.

28 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

This is a typical flint.cfg file:

-w ! Enable warnings
-u ! Enable usage checking
-O207 ! Suppress Hollerith constant warning
-O261 ! Suppress “initializer data type converted”
-Ttrim ! Make TRIM the default call-tree format
--t ! Default setting: turn call tree off
-Xno_unreferenced_parameters ! Eliminate unreferenced parameters
 ! Show common variables only where they are used
-Xno_unused_common_variables
--x ! Default setting: turn cross-reference off

Note: VMS configuration files may use “letter” switches without special rules or
restrictions. However, several restrictions apply if “letter” switches are used on
the VMS command line. For additional information, see section 3.1.2.

For the current set of default options, see the copy of flint.cfg provided with
FortranLint.

3.4 Environment Variables / Logicals

FortranLint recognizes the following environment variables (under UNIX) or
logicals (under VMS):

Variable Description

FLINTCFG Directory that contains alternate support files (see below)
FLINTHOME FortranLint installation directory
FLINTHOST Hostname of system running license-manager daemon
TMPDIR (UNIX only) Directory used for temporary files
SYS$SCRATCH (VMS only) Directory used for temporary files

FLINTHOME specifies the location of the main FortranLint directory (i.e., the
directory where FortranLint was installed). This variable is set during installation
(see Appendix A or Appendix B).

FortranLint includes a license-manager daemon (see Appendix C).
FLINTHOST specifies the system where the daemon resides. This variable is
also set during installation.

FortranLint uses the following run-time support files:

 flint.cfg Configuration file (see section 3.4)
 flint.err Error messages
 flint.hls “Help” file
 unixlib.lbt UNIX library definitions (see chapter 9)
 vmslib.lbt VMS library definitions

 3. Command Reference 29

Cleanscape Software FortranLint User’s Manual Version 4.3x

By default, FortranLint uses the copies stored in the main FortranLint directory
(i.e., the FLINTHOME directory). However, if FLINTCFG is defined,
FortranLint searches the FLINTCFG directory for support files before it loads
the default copies. Users may set this variable to load customized versions of the
support files.

Under UNIX, FLINTCFG specifies one or more directories using the following
format:

 directory-path
or
 directory-path:...:directory-path

Note: Directory paths must be separated by colons.

Under VMS, FLINTCFG specifies one or more directories using the following
format:

 directory-path
or
 directory-path,...,directory-path

Under VMS, directory paths must be separated by commas.

Users may define TMPDIR (under UNIX) or SYS$SCRATCH (under VMS) to
set or change the directory where FortranLint stores its temporary files.

Note: TMPDIR is ignored on UNIX systems that don’t support the standard
library routine tempnam().

30 3. Command Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

 4. FortranLint Source Conventions 31

Cleanscape Software FortranLint User’s Manual Version 4.3x

4
vv
vv

FortranLint Source Conventions

4.1 Source Format

FortranLint accepts one or more FORTRAN source files as input. Each source
file may contain one or more FORTRAN subprograms (or program units). A
subprogram/program unit may be a subroutine, a function, a block data module,
or a main program. INCLUDE-file names should not be specified explicitly on the
command line or in configuration files.

FortranLint understands several different source formats. In FORTRAN 77
mode (-7 or /LANG=F77 option), FortranLint assumes ANSI-standard fixed
format, with a continuation indicator at column 6 and a comment field starting at
column 73. To process FORTRAN 77 code that extends past column 72, add the
option “-e” (under UNIX) or /EXTEND (under VMS).

In Fortran 90/95 mode (-9 or /LANG=F90 option), sources may use either free
format or FORTRAN 77 fixed format. Variable-position comments (starting with
‘!’) may be used in either fixed or free format. FORTRAN 77-style comments
(starting with a ‘C’ in column 1) may be used only in fixed format. Free-format
lines may contain up to 132 characters.

TAB formatting is supported for target environments that allow it; i.e., if the label
field contains a TAB character, processing skips to the first non-blank character.
If that character is a non-zero digit, the source line is treated as a continuation line;
otherwise, the line is treated as a statement. TAB-formatted lines may be
intermixed with normal fixed-format lines.

FortranLint normally distinguishes between free-format files and fixed-format files
based on filename extension. By default, “.f90” files are assumed to be free format
and other files are assumed to be fixed or TAB format. To override the default
setting, use the “-R” option (under UNIX) or the /FORM option (under VMS).
For additional information, see chapter 3.

The maximum number of continuation lines supported is 1,000 lines per statement,
and there is a maximum of 32,000 significant characters per statement.

32 4. FortranLint Source Conventions

Cleanscape Software FortranLint User’s Manual Version 4.3x

4.1.1 “Debug” Lines

Source lines starting with “D” in column one (or “Y”, for EPC code) are “debug”
lines. By default, “debug” lines are treated as comment lines. If “-d” (or
/DLINES) is specified, FortranLint will process “debug” lines along with normal
source code.

4.2 Include Files

Standard INCLUDE statements are supported. FortranLint searches the following
directories for INCLUDE files:

(a) The directory which contains the source file that the current

INCLUDE statement belongs to.

(b) The user’s current directory (at the time when FortranLint was started).

(c) (VMS only.) The absolute path specified by the INCLUDE statement

(taking logicals into account).

(d) Directories specified by “-I” (or /INCLUDE) option switches,

moving from left to right.

(e) (UNIX only.) The standard directory “/usr/include”.

If an INCLUDE file can’t be located, FortranLint prints an error message and
attempts to continue.

INCLUDE files may be nested up to 10 levels deep.

Note: Under UNIX, FORTRAN programs may use both INCLUDE statements
and “#include” statements. “#include” is similar to INCLUDE; however,
“#include” statements are handled by the ‘C’ preprocessor. For additional
information, see the next section.

4.3 ‘C’ preprocessor (UNIX only)

Under UNIX, FortranLint supports the ‘C’ preprocessor; i.e., source files may use
standard ‘C’ “#define”, “#ifdef”, and “#include” statements.

Source files with “.F” filename extensions are sent through the preprocessor
automatically. If the command-line option “-p” is used, FortranLint sends all
source files through the preprocessor, regardless of filename extension.
Preprocessor output is then checked at the FORTRAN level. Line numbers used
for error messages are translated appropriately.

 4. FortranLint Source Conventions 33

Cleanscape Software FortranLint User’s Manual Version 4.3x

By default, FortranLint assumes that the preprocessor is /usr/lib/cpp. To use a
different preprocessor, run flpatch and patch the cpp parameter in the flint
executable. (For additional information, see Appendix A.)

The option switch “-D” may be used to define symbols at the preprocessor level,
and the option switch “-I” may be used to specify “#include” directories. For
additional information, see chapter 3.

FortranLint passes the following command-line arguments to the preprocessor:

(a) “-D” and/or “-I” option switches, if any

(b) FORTRAN source-file name

(c) Output-file name

Note: Files loaded by INCLUDE statements are loaded directly by FortranLint;
i.e., these files are not preprocessed.

4.4 CDD and DBMS Processing (VMS Only)

4.4.1 CDD (Common Data Dictionary) Declarations

FortranLint supports standard DICTIONARY statements.

DICTIONARY is similar to INCLUDE in that it adds declarations to the current
routine. However, DICTIONARY differs from INCLUDE in that it takes data
structures from a CDD dictionary instead of a source file. FortranLint uses the
FORTRAN compiler as a preprocessor to expand DICTIONARY statements into
normal code.

4.4.2 DBMS Support (FDML Statements)

FortranLint supports FDML statements (for example, invoke, ready, use, commit,
rollback, disconnect, connect, erase, get, modify, fetch, find, free, also, null, within, keep, reconnect,
and store). invoke statements are preprocessed by the FORTRAN compiler in the
same manner as DICTIONARY statements. FortranLint processes all other
FDML statements directly.

Note: Usage checking is suppressed for variables that are created by invoke
statements.

4.4.3 CDD/DBMS Requirements

FortranLint uses the FORTRAN compiler to expand DICTIONARY and invoke
statements into normal code. The FORTRAN compiler must therefore be
installed before these statements can be processed.

34 4. FortranLint Source Conventions

Cleanscape Software FortranLint User’s Manual Version 4.3x

Additionally, the VMS CDD package must be installed before DICTIONARY
statements can be processed, and the VMS DBMS package must be installed
before invoke statements can be processed.

4.5 FORTRAN 77 Extensions

FortranLint ’s FORTRAN 77 support is based on the 1978 ANSI FORTRAN 77
standard. FortranLint also supports extensions implemented by the following
compilers:

System Compiler Dialect code

(ANSI standard) FORTRAN, ANSI X3.9-1978 ANSI77
Cray YMP UNICOS CFT77 5.0 CRAY
Alpha/Digital UNIX (OSF1) DEC FORTRAN 6.0 DECUNIX
VAX/VMS DEC FORTRAN Version 6.0 DECVMS
HP9000 Series HPUX FORTRAN/9000 8.05 HPUX
Windows and Linux systems Lahey Fortran F77 LAHEY
Silicon Graphics IRIX-4D 3.3 FORTRAN 77 SGI
SunOS / Solaris Sun FORTRAN 1.4 SUN
VAX Ultrix VAX FORTRAN VAXULTRIX

Extensions supported by FortranLint include, but are not limited to, the following:

• Data-type size specifiers (for example, INTEGER*4)
• Records, structures, and unions
• Cray-style and Apollo-style pointers
• Debugging lines with “D” or “Y” in the first column
• TAB formatting
• In-line comments (both “!” and “;” styles)
• Long symbol names with non-alphanumeric characters
• Numerous binary, octal, and hex constant formats
• Hollerith constants
• Namelist I/O
• Dozens of system-specific I/O statement specifiers
• Hundreds of intrinsic functions
• All I/O format strings, including embedded expressions
• Abbreviated and symbolic expression operators
• Recursion
• Array sections and array expressions

 4. FortranLint Source Conventions 35

Cleanscape Software FortranLint User’s Manual Version 4.3x

4.6 Fortran 90/95 Extensions

FortranLint’s Fortran 90/95 support is based on the 1992 ANSI Fortran-
Extended (Fortran 90) standard. FortranLint also supports extensions
implemented by the following compilers:

System Compiler Dialect code

(ANSI standard) Fortran, ANSI X3.198-1992 ANSI90
Cray Y-MP UNICOS 7.0+ CF90 Release 1.0 CRAY
Compaq Windows Compaq/DEC Fortran F90 DECNT
Alpha/Digital UNIX (OSF1) DEC Fortran 90 DECUNIX
DEC VAX/Alpha OpenVMS DEC Fortran 90 DECVMS
EPC EPC Fortran 90 EPC
HP9000 Series HPUX FORTRAN/9000 8.05 HPUX
Windows and Linux systems Lahey Fortran F90 or F95 LAHEY
Silicon Graphics IRIX 6.1 MIPSpro Fortran 90 SGI
SunOS / Solaris Sun FORTRAN 1.4 SUN

In particular, FortranLint supports High Performance Fortran (HPF). For
additional information on HPF, see section 4.9.

Note: If FortranLint is used in Fortran 90/95 mode, the FORTRAN 77
extensions are supported, with the exception that debugging lines are not allowed
in free format.

4.7 Specifying FORTRAN Dialect

FortranLint normally assumes that the FORTRAN compiler running on the host
system will be used.

To select a different compiler, use the “-V” option (under UNIX) or /SYSTEM
(under VMS) and specify a dialect code from section 4.5 or 4.6. (For option
syntax, see chapter 3.)

To flag code that is not supported by a specific dialect, use “-P” (under UNIX) or
/PORT (under VMS), instead.

4.8 Default Sizes

On most systems, integers and logicals are four bytes long, by default. To change
the default size, use the option “-2” (under UNIX) or /NOI4 (under VMS).

If either of these options are selected, FortranLint interprets INTEGER and
LOGICAL as INTEGER*2 and LOGICAL*2. Additionally, integer and logical
constants are treated as two-byte values, unless they are too large into fit into the
smaller size.

36 4. FortranLint Source Conventions

Cleanscape Software FortranLint User’s Manual Version 4.3x

4.9 High Performance Fortran (HPF)

FortranLint supports High Performance Fortran (HPF).

By default, HPF statements are treated as normal comments. To enable HPF
checking, use the option “-Mhpf” (under UNIX) or /MISC=hpf (under VMS).

To add HPF processors and templates to a cross-reference, enable HPF checking
and select linenumbers or tabular output format:

Under UNIX, use: -Mhpf -Xlinenumbers
or -Mhpf -Xtabular

Under VMS, use: /MISC=hpf /XREF=linenumbers
or /MISC=hpf /XREF=tabular

For additional information on the linenumbers and tabular formats, see section
8.3.

For non-DEC target systems, FortranLint normally checks argument lists for
MAXLOC() and MINLOC() using the following rules:

 MAXLOC(ARRAY, DIM, MASK)
 MINLOC (ARRAY, DIM, MASK)

 ARRAY must be an integer or real array
 DIM is optional; if present, must be integer scalar
 MASK is optional; if present, must be of local type and conformable

with ARRAY

To apply the ANSI X3.198-1992 rules for MAXLOC() and MINLOC(), use the
option “-Mansi_maxloc” (under UNIX) or /MISC=ansi_maxloc (under VMS).
This option disallows the DIM argument.

Note that ansi_maxloc does not apply to DEC targets (i.e., Digital Fortran 90).

 5. Controlling Analysis 37

Cleanscape Software FortranLint User’s Manual Version 4.3x

5
vv
vv

Controlling Analysis

5.1 Setting the Scope

To enable global (inter-module) checking, use the “-g” option (under UNIX) or
/GLOBAL (under VMS). Global checking analyzes FORTRAN sources as a
group; this enables interface checking and improves usage checking of variables
passed as actual arguments.

If “-g” (or /GLOBAL) is not specified, subprograms are processed on an
individual basis, and call interface checking is not performed.

5.2 Message Classification

FortranLint checks for the following five general classes of problems:

• Syntax problems

• Subprogram interface problems

• Variable usage problems

• Portability problems

• Implicitly typed variables

Syntax problems are constructs that will not compile or that may be interpreted by
the compiler in a different way than the programmer intended. This includes
symbol names that have embedded blanks, re-declared or re-dimensioned
variables, and poorly structured branches using GOTOs.

Interface problems are problems with the interaction between subprograms. This
includes inconsistent argument lists in function or subroutine calls, inconsistent
common block organization, and unused or missing subroutines and functions.

Usage problems cover improper use of variables and arrays. Variables should be
both set and referenced; any deviation from this is flagged. Attempted redefinition
of constants in subprogram calls is also flagged.

Portability problems are constructs that are allowed on the host system but are not
recognized or are interpreted differently on other systems. This includes
structures, pointers, data type length specifiers, and other extensions.

38 5. Controlling Analysis

Cleanscape Software FortranLint User’s Manual Version 4.3x

Implicitly-typed variables can be flagged whether or not the “IMPLICIT
NONE” statement is used. If “IMPLICIT NONE” is used, they will be
categorized as syntax errors.

FortranLint breaks syntax problems, interface problems, data usage problems, and
portability problems down into three levels of severity:

• Error messages are the most serious and indicate that the code will not
compile or, probably, will not operate correctly.

• Warning messages flag constructs that may not operate as intended, that

may cause intermittent problems, or that may make no sense.

• FYI (or “for your information”) messages are used to flag minor issues
that may or may not be problems.

5.3 Selecting Analysis Level

Categories of messages may be enabled or disabled using the following options:

• Syntax Always enabled

• Interface “-g” (under UNIX) or /GLOBAL (under VMS)

• Usage “-u” or /USAGE (This option is on, by default)

• Portability “-a” or /ANSI
 -Psystem or /PORTABILITY=system (see section 5.5)

• Implicit typing “-m” or /IMPLICIT

Note: If global interface checking (-g or /GLOBAL) is enabled, usage checking
will detect a wider range of problems.

Severity level of messages in the above categories is controlled with the following
options:

• Errors Always enabled

• Warnings “-w” or /WARNINGS (This option is on, by default)

• FYIs “-f” or /FYI

To disable a category or level, add an extra dash (e.g., “--w”) under UNIX or
“NO” (e.g., /NOWARNINGS) under VMS.

 5. Controlling Analysis 39

Cleanscape Software FortranLint User’s Manual Version 4.3x

Examples:

To perform a comprehensive analysis, use the options “-gamf” (under UNIX) or
“/GLOBAL /ANSI /IMPLICIT /FYI” (under VMS).

To perform basic syntax checking, use “--uw” (under UNIX) or “/NOUSAGE
/NOWARNINGS” (under VMS).

5.4 Suppressing Individual Messages

To suppress individual diagnostic messages, use the “-O” (omit) option (under
UNIX) or /SUPPRESS (under VMS).

“-O” and /SUPPRESS accept message numbers as arguments. Message
numbers are shown between the category/severity field and the message text.
Multiple instances of the same message have the same number. For additional
information, see Appendix E.

“-O” and /SUPPRESS also accept the word “all” as an argument (e.g., “-Oall”
or /SUPPRESS=all). “all” suppresses all numbered messages, including syntax
errors.

If message numbers (or the word “all”) are preceded with a plus sign (“+”), the
specified message or messages are “unsuppressed”. E.g., if “-O201” is used to
suppress message #201, “-O+201” will re-enable it. Note that an unsuppressed
message will be shown only if its analysis category and level were selected.

Summary:

-O arg
/SUPPRESS=arg Action

 n Suppress message #n
 all Suppress all messages
 +n Unsuppress message #n
 +all Unsuppress all messages

Example:

“-Oall,+279,+281” (under UNIX) or “/SUPPRESS=(all,+279,+281)” (under
VMS) will suppress all messages but #279 and #281. Since messages #279 and
#281 are interface FYIs, the options “-gf” or “/GLOBAL /FYI” must also be
selected in order for these messages to be produced.

40 5. Controlling Analysis

Cleanscape Software FortranLint User’s Manual Version 4.3x

5.5 Portability Checking

To check for portability problems (problems that may occur when FORTRAN
code is ported to different systems), use the “-P” option (under UNIX) or
/PORT (under VMS).

“-P” and /PORT take target-system names as arguments. Target systems are
discussed in section 4.5 (FORTRAN 77 extensions) and section 4.6 (Fortran 90
extensions). System names include ANSI, ANSI90, CRAY, DECUNIX,
DECVMS, EPC, HPUX, NCUBE, OS32, SGI, SUN, and VAXULTRIX.
Multiple targets may be specified.

To flag non-ANSI constructs, use “-a” (under UNIX) or /ANSI (under VMS). If
FortranLint is run in Fortran 90/95 mode, these options have the same effect as
“-Pansi90” and /PORT=ANSI90. Otherwise, they have the same effect as
“-Pansi” and /PORT=ANSI.

Example:

If FORTRAN code is being ported to both VAX/VMS and CRAY systems, use
“-Pdecvms -Pcray” (under UNIX) or “/PORT=(DECVMS,CRAY)” (under
VMS) to check for portability problems related to either target system.

 6. Analysis Output

Cleanscape Software FortranLint User’s Manual Version 4.3x

41

6
vv
vv

Analysis Output

6.1 Overview

By default, FortranLint sends all text output to the console (stdout under UNIX
or SYS$OUTPUT under VMS). The output is divided into sections, which are
printed in the following order:

Section Controlled by

Current options N/A

List of source files N/A

Source listing -l -i
 (/LISTING /INCLUDE)

Analysis output -g -u -m -P -a -w -f -O

(/GLOBAL /USAGE /IMPLICIT /PORT/ANSI
/WARNINGS /FYI /SUPPRESS)

Call tree -t -T
 (/TREE /TREE=)

Cross-reference tables -x -X
 (/XREF /XREF=)

Statistics -s
 (/STATISTICS)

To redirect output under UNIX, use the standard UNIX redirection operators or
FortranLint ’s “-S” and “-+” options. To redirect output under VMS, use the
options /OUTPUT, /SPLIT, or /SUMMARY.

For additional information on “-S” and /SPLIT, see section 2.3.1 or chapter 3.

For additional information on “-+” and /SUMMARY, see section 2.3.3 or chapter
3.

To modify the output page width or page length, use “-W” and “-Y” (under UNIX)
or /WIDTH and /LPP (under VMS).

42 6. Analysis Output

Cleanscape Software FortranLint User’s Manual Version 4.3x

6.2 Summary Mode

FortranLint provides an optional progress meter. The progress meter is a
stationary counter (displayed on the console) that tracks the progress of analysis
from 0% to 100%.

To display the progress meter, use “-+” (under UNIX) or /SUMMARY (under
VMS).

By default, these options divert normal flint output to a set of text files.
Specifically, enabling the progress meter also sets the option “-Sflint” (under
UNIX) or /SPLIT= flint (under VMS). These options send analysis output to
flint.lnt, statistics output to flint.stt, etc. To specify a different base name, add an
explicit “-S” (or /SPLIT) option to the command line.

Note: After analysis is complete, FortranLint erases the progress meter and
displays a summary of the messages produced.

For additional information, see sections 2.3.1 and 2.3.3.

6.3 Analysis Output

6.3.1 Options and Filenames

The first line of the analysis output shows the FortranLint revision number and
the current date and time. The next few lines show the selected options, along
with where they were specified.

• Default options are options that were specified in the flint.cfg
configuration file in the installation directory. These are the system
defaults.

• User options are options that were specified in a flint.cfg configuration

file in the directory named in the environment variable FLINTCFG.
These are a user's custom defaults.

• Local options are options that were specified in a flint.cfg configuration

file in the local directory. These are usually the defaults for a specific
project.

• Expanded options are options that were specified in a configuration file

expanded onto the command line with the “-E” or /FILES option.

• Command options are options that were placed on the command line.

The selected source file names are shown next, grouped by directory. A source
listing follows (if requested), along with diagnostic messages.

6.3.2 Source Listing

 6. Analysis Output

Cleanscape Software FortranLint User’s Manual Version 4.3x

43

To produce a source listing, use the “-l” (dash ell) option (under UNIX) or
/LISTING (under VMS).

By default, the listing does not expand include files. To expand include files, use
the “-i” option (under UNIX) or /INCLUDE (under VMS).

6.3.3 Diagnostic Messages

FortranLint generates a diagnostic message for each problem detected within a
subprogram/program unit. Each message includes the source line and a pointer
to the column where the problem appears. Also shown are the name of the
source file, the subprogram/program unit name, the line number, the message
category and severity, the message number, and the message text.

A typical message looks like this:

> CALL DIPSTAT (4, CURITEM)
> ^
demo.f:PRINTIT
line 43: INTERFACE ERROR #59- constant is changed by subprogram.

Messages are generally printed in the order they appear in the source file, and are
grouped by subprogram/program unit. Each message group starts with a header
consisting of a row of “*” characters followed by subprogram/program unit
information. The header looks like this:

Subroutine PRINTIT File demo.f Line 39

Additional diagnostic messages may be printed after a subprogram/program unit
is completely processed or after all subprograms are processed. For example:

IMPLICIT- symbols were implicitly typed: A, AQDATA, DELTI

USAGE ERROR- local variables referenced but never set: J, K

SYNTAX FYI- unused labels: 150

6.4 Statistics Output

To generate statistical reports, use the “-s” option (under UNIX) or
/STATISTICS (under VMS). Statistical reports include program size, comment
density, and diagnostic messages summarized by number, category, and severity.

Program size statistics appear first. The number of source files is shown, followed
by the number of lines and bytes of code for the source files, the include files, and
the total of the two:

44 6. Analysis Output

Cleanscape Software FortranLint User’s Manual Version 4.3x

Number of source files: 1

Source files: 52 lines, 1314 bytes (5% comments, 95% code)
Include files: 44 lines, 1052 bytes (14% comments, 86%
code)
Total parsed: 96 lines, 2366 bytes (9% comments, 91% code)

Counts on “Include files” reflect all appearances of the include files and will be
much higher than that of the include files alone. “Total parsed” is calculated after
all include files are expanded.

Byte counts do not include newline characters.

Comment percentage is based on byte counts and takes both comment lines and
inline comments into account. The comment percentage for include files and total
parsed is calculated after all include files are expanded. This multiplies the weight
of an include file comment by how many times it is included.

A breakdown of subprograms/program units follows:

Total subprograms: 7
 Subroutines: 6
 Functions: 0
 Program: 1
 Block Data: 0
 Modules: 0

Shown next is a breakdown of the messages produced. Messages are sorted by
frequency of appearance. Displayed for each message are its category, severity,
number, frequency, and message text. Context-dependent fields in the message
text are shown as asterisks (“*”).

Individual message summary

INTRFC ERR #57- 2x: too many arguments.
INTRFC WARN #63- 2x: expression is changed by subprogram.
SYNTAX WARN #47- 1x: branch into do loop via label *.
INTRFC ERR #56- 1x: not enough arguments.
INTRFC ERR #59- 1x: constant is changed by subprogram.
INTRFC ERR #95- 1x: this name is defined as a subroutine.

The number of messages is displayed last, shown both in total and by category and
severity. The code <supp>, meaning “suppressed”, is shown for message
categories and severities that were not selected.

Total messages: 18

 Errors Warnings FYIs
 --------- -------------- -------
Syntax: 0 1 0
Interface: 8 4 0
Data usage: 2 1 2

Implicit typing: <supp>

 6. Analysis Output

Cleanscape Software FortranLint User’s Manual Version 4.3x

45

6.5 Exit Status

FortranLint return status output is as follows:

On VMS systems:

0x18000001: No errors/warnings/FYIs;
0x18000003: FYIs produced;
0x18000000: Warnings (and FYIs) produced;
0x18000002: Errors (and warning/FYIs) produced;
0x18000004: Fatal errors caused FortranLint to

terminate before completion.

On UNIX systems:

0: No errors/warnings/FYIs;
1: FYIs produced;
2: Warnings (and FYIs) produced;
3: Errors (and warning/FYIs) produced;
4: Fatal errors caused FortranLint to terminate before

completion.

Note that that under UNIX, return status 0, 1, or 2 indicates that FortranLint did
not detect any errors with the specified options. If “-Mnoexit” is used,
FortranLint will return 0 (only), unless errors are detected.

46 6. Analysis Output

Cleanscape Software FortranLint User’s Manual Version 4.3x

 7. Call Trees 47

Cleanscape Software FortranLint User’s Manual Version 4.3x

7
vv
vv

Call Trees

7.1 Overview

“Call trees” are diagrams which outline the calling structure used by the
FORTRAN input source files. To generate call trees, use the “-t” option (under
UNIX) or /TREE (under VMS).

A typical call tree (using the default format) looks like this:

FORTRAN-lint (call tree)

This is a primary tree starting at the program 'PROCDAT'

PROCDAT-+-GETUNIT
 |
 +-READNAME
 |
 +-SETTYPE--PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 | |
 | +-GETUNIT
 |
 +-PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 |
 +-GETUNIT

7.2 Tree Options

To modify the call tree format, use the “-T” option (under UNIX) or /TREE
(under VMS). These switches take one or more sub-options as arguments,
specified as follows:

-Toption1,option2,option2, ... under UNIX
or

/TREE=(option1,option2,option2, ...) under VMS

For a list of sub-options, see the next section.

48 7. Call Trees

Cleanscape Software FortranLint User’s Manual Version 4.3x

7.2.1 Arguments

“-T” and /TREE accept the following sub-options:

{no}alphabetic Calls are normally listed using the order in which they

occur. This sub-option sorts call trees alphabetically. The
condensed option is recommended, in this mode.

{no}condensed Condenses multiple calls to the same routine. If a routine

calls the same routine many times, these calls are merged
into one call. (For older versions of FortranLint, this is the
default mode.)

disable Disables call-tree output. This sub-option has the same

effect as “--t” (under UNIX) or /NOTREE (under
VMS).

enable Enables call-tree output. This sub-option has the same

effect as “-t” (under UNIX) or /TREE (under VMS).

graphics=xx:xx: ... Changes the tree graphics characters. The values given are

the hex codes for the following shapes:

 (1) (2) (3) (4) (5)

 | | |
 ----- | --+-- +-- +--
 | | |

The values are two-digit hex codes separated by colons.
For example, if the IBM extended character set is available,
the following values may be used:

graphics=C4:B3:C2:C3:C0

nographics Restores the default graphics characters.

head:symbol Suppresses the full call tree and shows a call tree with the

specified symbol as the top node. Multiple top nodes may
be specified.

help Outputs a help screen describing tree sub-options and

terminates FortranLint .

{no}library Shows calls made to routines defined in library template

(.lbt) files. For additional information, see chapter 9.

{no}squish Compresses call trees vertically by removing excess line

graphics. The resulting trees are less readable, but require
only half the space.

 7. Call Trees 49

Cleanscape Software FortranLint User’s Manual Version 4.3x

{no}trim Trims the call tree by suppressing repeated subtrees. This is
the default mode of operation. notrim may be used to
disable trimming.

Note: “notrim” may produce call trees that require a
large amount of disk space.

{no}undefined Shows calls made to routines that are undefined in the

source code or libraries.

7.3 Call Tree Format

The call tree displays routines, subroutine calls, and function references in a
graphical format. The starting routine is shown at the left top of the graph, and
each level of routine calls is shown to the right of the calling routine. Each routine
is connected to its called routines by lines drawn from dashes, vertical bars, and
plus signs. Within each routine, calls are shown in the order they appear in the
source code.

Routines that are not the program routine and are not called by any other routine
are considered “detached”. They will not appear in the main tree, but will be
shown as the head of their own detached trees.

Symbol Explanation

(name) Parentheses are used to flag undefined routine name

(n) Parentheses around a number n identify a trimmed subtree

{ name } Braces are used to mark library routine name (from “.lbt” libraries)

[name] Square brackets are used to mark Fortran 90 internal subprogram name

@name Precedes calls to dummy routine name

* name * Marks recursive chains that are chopped after the first iteration of name

7.3.1 Trimmed Trees

The size of call trees grows exponentially with program size. It's therefore
impractical to generate complete call trees for large programs. As an alternative,
FortranLint supports "trimmed" call trees.

In "trim" mode, FortranLint removes (or trims) duplicate subtrees. This brings tree
size down to a reasonable level. At each "trim" point, FortranLint prints a subtree
number that indicates where a master copy of the associated subtree can be found.

To enable "trim" mode, use the option switch “-Ttrim” (under UNIX) or
/TREE=TRIM (under VMS). The configuration file provided with FortranLint
includes this option; FortranLint therefore uses "trim" mode by default.

50 7. Call Trees

Cleanscape Software FortranLint User’s Manual Version 4.3x

Example: This is a "trimmed" tree (produced by flint -Ttrim):

PROCDAT-+-GETUNIT
 |
 +-READNAME
 |
 +-SETTYPE--PRINT (1)--PRINTIT-+-DIPSTAT--*PRINT*
 | |
 | +-GETUNIT
 |
 +-PRINT see 1

This is an "untrimmed" version of the same tree (produced by flint -Tnotrim):

PROCDAT-+-GETUNIT
 |
 +-READNAME
 |
 +-SETTYPE--PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 | |
 | +-GETUNIT
 |
 +-PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 |
 +-GETUNIT

7.3.2 Condensing Multiple Calls

By default, call trees show all of the calls made inside a given program. If one
routine calls another several times, every call is displayed. As an alternative,
FortranLint supports a "condensed" mode which shows the relationship between
routines instead of the exact calling sequences used. To produce "condensed"
trees, use the option
“-Tcondensed” (under UNIX) or /TREE=CONDENSED (under VMS). This
option merges multiple calls from one routine to another into a single association.

 7. Call Trees 51

Cleanscape Software FortranLint User’s Manual Version 4.3x

Example: This is a "condensed" tree (produced by flint -Ttrim,condensed):

PROCDAT-+-GETUNIT
 |
 +-READNAME
 |
 +-SETTYPE-+-PRINT (1)--PRINTIT-+-DIPSTAT--*PRINT*
 | | |
 | | +-GETUNIT
 | |
 | +-READNAME
 |
 +-PRINT see 1

This is an "uncondensed" version of the same tree (same flint command, omitting the
condensed option):

PROCDAT-+-GETUNIT
 |
 +-READNAME
 |
 +-SETTYPE-+-PRINT (1)-+-PRINTIT (2)-+-DIPSTAT--*PRINT*
 | | | |
 | | | +-GETUNIT
 | | |
 | | +-PRINTIT see 2
 | |
 | +-READNAME
 |
 +-READNAME
 |
 +-PRINT see 1
 |
 +-GETUNIT

7.3.3 Sorting Alphabetically

Calls are normally shown in order of appearance. To sort calls alphabetically (by
routine name), use “-Talphabetical,condensed” (under UNIX) or
“/TREE=ALPHABETICAL,CONDENSED” (under VMS).

Example:

PROCDAT-+-GETUNIT
 |
 +-PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 | |
 | +-GETUNIT
 |
 +-READNAME
 |
 +-SETTYPE--PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 |
 +-GETUNIT

52 7. Call Trees

Cleanscape Software FortranLint User’s Manual Version 4.3x

7.3.4 Squished Trees

By default, FortranLint produces call trees that are double-spaced vertically. This
improves readability. To produce single-spaced trees, use the option “-Tsquish”
(under UNIX) or /TREE=SQUISH (under VMS).

Note: Single-spaced trees are more compact. However, due to limitations of the
ASCII character set, they are also harder to read. If an extended ASCII character
set with line-drawing characters is available, the graphics option should be used in
conjunction with squish. For additional information, see section 7.3.5.

Example: This is a "squished" tree
(produced by flint -Tnotrim,squish,graphics= c4:b3:c2:c3:c0):

PROCDAT─┬─GETUNIT
 ├─READNAME
 ├─SETTYPE──PRINT──PRINTIT─┬─DIPSTAT──*PRINT*
 │ └─GETUNIT
 └─PRINT──PRINTIT─┬─DIPSTAT──*PRINT*
 └─GETUNIT

This is an "unsquished" version of the same tree (same flint command, omitting the
squish and graphics options):

PROCDAT-+-GETUNIT
 |
 +-READNAME
 |
 +-SETTYPE--PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 | |
 | +-GETUNIT
 |
 +-PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 |
 +-GETUNIT

7.3.5 Graphic Character Set

By default, the call tree uses the ASCII characters “-”, “|”, and “+” to connect the
routine names. To specify alternate characters, use:

 -Tgraphics=xx:xx:xx:xx:xx under UNIX
or
 /TREE=(GRAPHICS=xx:xx:xx:xx:xx) under VMS

where xx entries are ASCII character codes expressed as two-digit hexadecimal
values. The five entries are interpreted as follows:

(a) 1st code: horizontal connector
(b) 2nd code: vertical connector
(c) 3rd code: T intersection
(d) 4th code: “|-” intersection
(e) 5th code: L intersection

 7. Call Trees 53

Cleanscape Software FortranLint User’s Manual Version 4.3x

For example, if the IBM extended character set is available, use c4:b3:c2:c3:c0.
Below is a "squished" tree
(produced by flint -Tnotrim,squish,graphics= c4:b3:c2:c3:c0):

PROCDAT─┬─GETUNIT
 ├─READNAME
 ├─SETTYPE──PRINT──PRINTIT─┬─DIPSTAT──*PRINT*
 │ └─GETUNIT
 └─PRINT──PRINTIT─┬─DIPSTAT──*PRINT*
 └─GETUNIT

The default values are 2d:7c:2b:2b:2b; see Section 7.2.1. To restore the default
values, use “-Tnographics” (UNIX) or /TREE=NOGRAPHICS (VMS).

7.4 Call Tree Content

7.4.1 Top Node

Call trees can be generated with any routine as the top routine. When the top
routine is selected, the full tree and detached trees are suppressed.

To generate a tree starting at the routine name, use the option switch “-Thead:name”
(under UNIX) or /TREE=HEAD:name (under VMS).

To display multiple trees, specify multiple routine names. For example:

 -Thead:PRINT,head:SETTYPE under UNIX
or
 /TREE=(HEAD:PRINT,HEAD:SETTYPE) under VMS

will show trees for both “PRINT” and “SETTYPE”:

This is a primary tree starting at the program 'PRINT'

PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 |
 +-GETUNIT

This is a primary tree starting at the program 'SETTYPE'

SETTYPE--PRINT--PRINTIT-+-DIPSTAT--*PRINT*
 |
 +-GETUNIT

To cancel a previously specified “-Thead” (or /TREE=HEAD) switch, add
“-Tnohead” (under UNIX) or /TREE=NOHEAD (under VMS) to the
command line. This will restore the full call tree.

7.4.2 Undefined Routines

54 7. Call Trees

Cleanscape Software FortranLint User’s Manual Version 4.3x

Call trees normally include all calls, whether or not the called routines are defined in
the current input files. FortranLint uses parentheses to flag undefined routines.

To suppress calls to undefined routines, use “-Tnoundef” (under UNIX) or
/TREE= NOUNDEF (under VMS). If these options are used, call trees will be
restricted to calls between routines defined in the current input files.

To restore the default mode of operation (e.g., if “-Tnoundef” was set in a
configuration file), use “-Tundefined” (under UNIX) or
/TREE=UNDEFINED (under VMS).

7.4.3 Library Routines

If “library” (.lbt) files are specified on the command line, call trees will include
calls to the associated library routines. FortranLint uses curly braces ({}) to flag
library calls.

Calls to library routines will be displayed whether or not the noundef sub-option
is used (see section 7.4.2). However, calls between library routines are not displayed,
in either case.

To generate call trees which exclude library calls, use “-Tnolib” (under UNIX) or
/TREE=NOLIB (under VMS).

To restore the default mode of operation, use “-Tlibrary” (under UNIX) or
/TREE= LIBRARY (under VMS).

For additional information on library files, see chapter 9.

7.5 Recursion

FortranLint uses a pair of asterisks to flag recursive calls. For example, see
PRINT in section 7.4.1.

7.6 Dummy Routines

FortranLint uses “@” characters to flag indirect calls; i.e., calls to a routine which
are made indirectly through the argument list of another routine.

7.7 Entry Points

The “>“ symbol in a call tree indicates that the call was made through an entry
point. For example:

|
+-ENTRPT>SUB1
|

Where ENTRPT is the entry point into subroutine or function SUB1.

 7. Call Trees 55

Cleanscape Software FortranLint User’s Manual Version 4.3x

56 7. Call Trees

Cleanscape Software FortranLint User’s Manual Version 4.3x

7.8 Fortran 90 Internal Subprograms

Square brackets ([]) surrounding a routine name indicate that the routine is a
Fortran 90 internal subprogram or a module subprogram:

MAIN-+-M
 |
 +-M_INNER
 |
 +-OUTER--M
 |
 +-[MAIN_INNER]

 7. Call Trees 57

Cleanscape Software FortranLint User’s Manual Version 4.3x

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

58

8
vv
vv

Cross Reference

8.1 Overview

To generate a symbol table cross-reference, use the option “-x” (under UNIX) or /XREF
(under VMS). For sample cross-reference output, see Appendix D or E.

Cross-reference tables can be generated from source files or from database files (see
chapter 10).

The option switches “-X” and /XREF may be used to specify sub-options that control the
format and content of the cross-reference table.

The UNIX cross-reference format/content sub-options are:

-Xfreeform Free-form cross-reference
-X{no}tabular Selects tabular format (vs. freeform)
-X{no}equiv Selects equivalence usage information
-X{no}line Line resolution (vs. subprogram resolution)
-X{no}legend Selects legend for line resolution codes

The VMS cross-reference format/content sub-options are:

/XREF=freeform Free-form cross-reference
/XREF={no}tabular Tabular format (vs. freeform)
/XREF={no}equiv Selects equivalence usage information
/XREF={no}line Line resolution (vs. subprogram resolution)
/XREF={no}legend Selects legend for line resolution codes

Two cross-reference formats are supported: freeform and tabular.

freeform is the default format. This format uses variable-length lines and shows
information using a compact layout. The default sub-options for this format are
“-Xnoline” and “-Xnolegend” (under UNIX) or /XREF=noline and /XREF=
nolegend (under VMS).

The tabular cross-reference format organizes fields into columns. This format is at least
132 characters wide. The default sub-options for tabular cross-references are “-Xline”
and “-Xlegend” (under UNIX) or /XREF=line and /XREF=legend (under VMS).

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

59

The line or noline sub-option sets the cross-reference to either line resolution or subpro-
gram/program unit resolution, respectively. Subprogram/program unit resolution shows
usage of a symbol within a subprogram/program unit, while line resolution shows usage of
a symbol on each line in which that symbol appears. This must be set during source
analysis to have effect.

If the “-g” (or /GLOBAL) option is used, the cross-reference will include additional
information. Specifically, dummy argument usage is shown for subroutine and function
definitions. In addition, the usage of the variables and arrays that are passed as actual
arguments are determined.

8.2 Layout

Symbols are grouped into the following categories:

• Programs

• Block data subprograms/program units

• Subroutines

• Functions

• Modules (F90 only)

• Common blocks

• Structures

• Records

• Variables and arrays

• Parameters

Symbols are sorted alphabetically by name within each group.

If a symbol appears in more than one context (e.g., as a variable in one subprogram
/program unit and as a subroutine name in another), the symbol is shown in both groups.

In the tabular format cross reference, the program, block data, module (F90 only),
subroutine, and function sections are combined, as are the records and variable/array
sections.

The information shown for each symbol will vary by category.

8.2.1 Program Routines

This symbol name is derived from the program name given on a program statement. If an
unnamed program routine exists, it is given the name “Program”. Multiple unnamed
programs are named “Program2, Program3, ..., etc.”. The filename and the line number
where the program routine begins are shown along with the program name.

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

60

8.2.2 Block Data Routines

These are the symbol names from block data statements. Like program symbols, unnamed
block data subprograms/program units are named “Blockdata”, “Blockdata2”, etc.

The filename and the line number where the block data subprogram/program unit begins
are shown along with the block data name.

8.2.3 Subroutines and Functions

External procedures, internal procedures (F90 only), module procedures (F90 only),
intrinsic procedures, and statement functions are shown in this section and are labeled
correspondingly.

For functions, the data type is shown. This is normally the data type of the function
definition. If the function is undefined, the data type used by the first function call is used.

An internal subprogram (F90 only) has its parent routine as a qualifier using a double colon
(::), for example, SUB::SUB_INNER.

If the code for the subroutine or function appeared in the sources analyzed, the filename and
line number of the subroutine/function statement are shown. If the definition was in a
FortranLint library (.lbt) file, the name of the library is shown.

Argument descriptions of external, internal, and statement functions are also shown if the
“-g” or /GLOBAL option was used during analysis. The argument descriptions show the
class, data type, and usage of each argument. Argument class is one of the following:

 <blank> variable
 array variable or record array
 subprogram function or subroutine
 return alternate return
 --- unused argument

Argument usage is indicated by the single-letter codes listed below:

 Code Description

 S set
 R referenced (used)
 X undetermined

For external and internal subroutines and functions, called routines are shown. If the table
is in tabular format, the line number of each call is shown.

Finally, all calls to the function, subroutine or F90 module are listed. In the tabular cross-
reference, the locations of the calls are shown by subprogram/program unit, filename, and
line number in the References columns.

8.2.4 Modules (F90 only)

These are the symbol names from module statements.

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

61

The filename and the line number where the module subprogram/program unit begins are
shown along with the module name.

Modules referenced by this module are shown. If the table is in tabular format, the line
number of each module reference is shown in the Calls column.

Finally, all references to the module via USE association are listed. In the tabular cross-
reference, the locations of the calls are shown by subprogram/program unit, filename, and
line number in the References column.

8.2.5 Common Blocks

Common blocks are shown along with their size (in bytes) and a list of their members. The
routines that the common blocks appear in are shown, categorized into the following
groups:

model First instance of the common block. FLINT checks

subsequent occurrences of the common block against this
instance.

same Matches the model.

names differ Member types and sizes match the model, but they have

different names.

layout differs Member types and/or sizes don't match the model.

8.2.6 Structures and Structure Components

The cross-reference lists all structures used by the program, including their size, format,
and members. Structures of the same name, size, and format are merged.

If the linenumbers or tabular format is selected, the cross-reference also includes a
section labeled “Structure components” which lists occurrences of structure components.
For additional information on the linenumbers and tabular formats, see section 8.3.

8.2.7 Variables, Arrays, and Records

Variables, arrays, and records are shown in this section. This includes automatic (local),
dummy, common block members, and F90 module entities.

Arrays are distinguished by the dimension list. Each dimension is shown as either an upper
bound or a lower/upper bound pair separated by a colon. If the lower or upper bounds
are adjustable, “adj” appears. For open-ended dimensions, an asterisk (*) appears as the
upper bound.

The Type column shows the data type including a length specifier for symbols or the name
of the associated structure for records.

The Kind column shows the kind parameter of the symbol, if specified.

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

62

The Attributes column shows the attributes of each symbol. Attributes include local,
pointer, pointer based, and common block members. Common block members are
shown with the name and byte offset of the common block to which they belong.

The References column shows the cross-reference information for each symbol. The
location resolution is either per subprogram/program unit or per line, depending on the
setting of the “-Xlinenumbers” or /XREF=linenumbers option when the sources are
analyzed. Subprogram/program unit resolution will show usage within each sub-
program/program unit and is described in words. Line resolution will show usage for each
line the symbol appears on, and its usage is described in single-letter codes.

Symbol usage is described as one or more of the following:

Line Subprogram
codes codes Description

--- Unused Symbol was not referenced, set, or indeterminate
A Actual arg Symbol passed as an actual argument
B Array bound Symbol was used as an adjustable bound for an array
D --- Symbol appeared in a declaration (type decl, dim, common)
E Equivalenced Appeared in an equivalence statement
F SF Dummy arg Appeared as a statement function dummy argument
G Ref as Label An assigned goto jumped to label assigned to this symbol
I Indirect Init A symbol Equivalenced to this symbol was initialized
I Initialized Initialized in data statement, or when given data type
L Set to Label Symbol was assigned a label
M Allocated Symbol was allocated
N Nullified Symbol was nullified
O Optl dummy arg Symbol appeared as an optional dummy argument
P Dummy arg Symbol appeared in a subroutine or function statement
R Ref Symbol was referenced (its value was used)
S Set Symbol was assigned a value
X Indeterminate May be ref or set, but exact usage cannot be determined
Z Deallocated Symbol was deallocated

Usage information (Ref/Set) is carried through all variable associations, including
actual/dummy argument, common block member, and equivalence associations.

The default is to suppress unused common blocks. For additional information, see section
8.4.

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

63

8.2.8 Parameters

Parameters are shown along with their data type and their value. Parameters from different
routines that have the same name and the same value will be merged.

The following usage codes apply to parameters:

Line Subprogram
codes codes Description

 D --- Symbol appeared in a declaration (type decl, parameter)
 R Ref Symbol was referenced (its value was used)
 S Set Symbol was assigned a value (parameter statement)

The default is to suppress unreferenced parameters. For additional information, see
section 8.4.

8.2.9 Equivalences

Entries for variables include equivalence information. For non-common block members,
equivalences are named variables in the same scoping unit or the parent scoping unit. For
common-block members, equivalences belong to the same common block.

Note: When a variable is equivalenced to an array element, FortranLint recognizes only
the array name as equivalence. Consequently, when two variables that are not common
block members are equivalenced to different elements of the same array, FortranLint will
show the two variables and the array as the equivalence of one another. In case of two
different scalar members of the same common block that are equivalenced to different
array elements of the same array, FortranLint will show the array as the equivalence of both
scalar members.

8.2.10 High Performance Fortran (HPF)

If HPF checking is enabled, and if the linenumbers or tabular format is selected, the
cross-reference includes a section that displays occurrences of HPF processors and
templates.

For additional information on HPF, see section 4.9. For additional information on the
linenumbers and tabular formats, see section 8.3.

8.3 Format Selection

FortranLint allows users to select different formats for the cross-reference table by using
the “-X” option (UNIX) or /XREF (VMS). Available formats include:

-Xfreeform /XREF=freeform
-X{no}tabular /XREF={no}tabular
-X{no}equiv /XREF={no}equiv
-X{no}linenumbers /XREF={no}linenumbers
-X{no}legend /XREF={no}legend

A) freeform / tabular

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

64

 “-Xtabular” (under UNIX) or /XREF=tabular (under VMS) selects a table style

that uses fixed-width columns. The output is 132 or more columns wide. The default
line numbering mode for this format is “-Xlinenumbers” (under UNIX) or
/XREF=linenumbers (under VMS).

 “-Xfreeform” (under UNIX) or /XREF=freeform (under VMS) selects a more

compact style with fields separated by single spaces. The default line numbering mode
for this format is “-Xnolinenum” (under UNIX) or /XREF=nolinenum (under
VMS).

B) equiv / noequiv

By default, the cross-reference entry for a given variable includes usage information
for the associated equivalences, whether or not the variable is used directly. To
suppress equivalence usage information, use “-Xnoequiv” (under UNIX) or
/XREF=noequiv (under VMS).

C) linenumbers / nolinenum

To produce cross-reference tables with line numbers, use “-Xlinenumbers” (under
UNIX) or /XREF=linenumbers (under VMS).

To limit cross-reference tables to the subprogram/program unit level, use
“-Xnolinenum” (under UNIX) or /XREF=nolinenum (under VMS).

Note: To be effective, linenumbers or nolinenum must be specified after
“-Xtabular”, “-Xfreeform”, /XREF=tabular, or /XREF=freeform on the
command line.

 D) legend / nolegend

 If linenumbers is selected, FortranLint prints single-character usage codes along with

line numbers. Usage codes are described in a legend printed at the end of the cross-
reference.

To suppress the legend, use “-Xnolegend” (under UNIX) or /XREF=nolegend
(under VMS).

To restore the legend (if it has been disabled), use “-Xlegend” (under UNIX) or
/XREF=legend (under VMS).

Note: To be effective, legend or nolegend must be specified after “-Xtabular”,
“-Xfreeform”, /XREF=tabular, or /XREF=freeform on the command line.

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

65

8.4 Content Selection

“-X” and /XREF both accept content selection arguments.

Content selection arguments are sentence fragments composed of one to six words,
separated by underlines or dashes. Each sentence fragment describes a criterion that can
be used to select, add to, or filter cross-reference output.

A complete content selection includes the following words as its arguments:

 -X{conjunction}{_usage}{_scope}{_class}{_named_xxx} under UNIX

/XREF={conjunction}{_usage}{_scope}{_class}{_named_xxx} under VMS

Conjunctions Usage (Adjective) Scope (Adjective) Class (Noun)

 only used/unused local routines
 and ref/unref dummy/nondummy programs
 no set/unset statement/nonstatement subroutines
 called/uncalled intrinsic/nonintrinsic functions
 indeterm/determ global blockdata
 actual/notactual common/noncommon modules
 init/uninit external/nonexternal extern
 decl/undecl internal/noninternal blocks
 equiv/unequiv structures
 variables
 scalars
 arrays
 records
 parameters

Note: The default conjunction is “only”.

While any of the words composing the criteria sentence are optional, the order of the
words is significant. All words may be abbreviated, as long as they remain unambiguous.
A few examples are:

Example Result

-Xno_unused_variables Suppress unused variables
-Xand_par_named_+oo Also show parameters with names ending in “oo”
-Xonly_ref_dum_var_nam_i Show referenced dummy variables named “i”
/XREF=common_arrays Show arrays in common blocks
/XREF=arr_named_a?b+c Show arrays named {any-letter}b{zero-or-more-letters}ca

(1) The conjunction, if specified, must be first. This word specifies whether the criteria

sentence is a selection, filter, or addition. The default mode of operation is “ONLY”.

Word Type Description

ONLY selection suppress everything but the following (default)
NO filter suppress the following
AND addition add the following to what is already selected
 (will not be subject to previous filter criteria)

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

66

(2) The usage adjective, if specified, must be next. This word acts on symbols at the
subprogram/program unit level.

If a symbol is used in a particular subprogram/program unit in the fashion described
by the usage adjective, the use of that symbol within the subprogram/program unit is
included in the selection. If the usage adjective is omitted, FortranLint disregards
usage when determining the selection.

Word Antonym Description

used unused Referenced, set, called, or indeterminate
referenced unreferenced
set unset
called uncalled
indeterminate determinate
actualarg notactualarg Variables passed to external routines
initialized uninitialized
declared undeclared Data type, dimensions, or common
equivalenced unequivalenced

Filtering acts on references at a subprogram/program unit level, filtering out the
references to a symbol that match the filter criteria. If all references to a symbol are
filtered out, the symbol itself is suppressed.

(3) The scope adjective, if specified, must be next.

This is used in a similar fashion to the usage adjective but relates to the scope of the
symbol. If the scope adjective is omitted, scope is not used in determining the
selection.

Word Antonym Description

local --- Dummy, Statement, Intrinsic, or Automatic
dummy nondummy Dummy argument
statement nonstatement Statement function
intrinsic nonintrinsic Intrinsic function
global --- Common or External
common noncommon Common block or common block member
external nonexternal External routine

(4) The class noun, if specified, must be next. This specifies the class of the symbol.

The class noun describes categories of symbols. If the class noun is omitted, the
selection contains all categories of symbols limited by the usage and scope adjectives.

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

67

Class Subclasses Description

routines Includes programs, subroutines, etc.
 programs
 subroutines Includes dummy subroutines
 functions Includes statement, dummy, and intrinsic functions
 blockdata
 external External routines which are undefined and unused
blocks --- Common blocks
structures ---
variables Includes scalars, arrays, and records
 scalars Single-valued variables
 arrays
 records Structured records
parameters --- Defined in parameter statement

 (5) The symbol name is specified last.

This is composed of two words, the word “named” followed by the actual symbol
name. The following wildcards are allowed:

 * or + matches zero or more characters
 ? or . matches one character

Wildcards may be combined.

Example:

 -Xnamed_ab+f.h under UNIX
or
 /XREF=named_ab+f.h under VMS

The default content of the cross-reference table is everything except unused common
variables and unreferenced parameters.

UNIX examples:

-Xno_intrinsic Suppress intrinsic functions

-Xuncalled_routines Only routines that have not been called

-Xand_unused_parameters Show unused parameters, too

-Xno_unused_common_variables Don’t show declarations of common variables
 where they are unused (if a symbol is
 never used, its name does not appear)

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

68

VMS examples:

/XREF=routines Only show routine names

/XREF=no_common Suppress common blocks and common
 block members

/XREF=unset_functions Show only undefined functions

/XREF=unused_dummy_arrays Show array dummy arguments that are unused

Multiple phrases may be given; these are checked in order from left to right. The phrases
may be either on the same option or on separate options.

UNIX example:

-Xset_variables -Xno_unref_common_arrays -Xand_init_common_var

This will show set variables that are not unreferenced array common block members and
any common block members that are initialized.

VMS example:

/XREF=routines,and_common_blocks

This will show routines and common blocks.

As mentioned previously, the default conjunction is “only”. The following combination
will produce unexpected results:

-Xused_variables -Xequivalenced_variables under UNIX
 or

/XREF=used_variables /XREF=equivalenced_variables under VMS

If the intent is to produce a cross-reference table with only variables that are used or
equivalenced, the above command line option will not work. The second argument
(equivalenced_variables) will override the first argument (used_variables), since the default
conjunction is “only”. The cross-reference table produced by this option will only include
equivalenced variables. To perform the desired operation, use:

-Xused_variables -Xand_equivalenced_variables under UNIX
 or

/XREF=used_variables /XREF=and_equivalenced_variables under VMS

 8. Cross Reference

Cleanscape Software FortranLint User’s Manual Version 4.3x

69

 9. Library Support 71

Cleanscape Software FortranLint User’s Manual Version 4.3x

9
vv
vv

Library Support

9.1 Overview

FortranLint supports a feature similar to ‘C’ prototypes. Specifically, the user can
create “library template” files for use in subsequent analysis operations.

A library template (or “.lbt”) file is a binary file that describes the interface
structure of a library or package. “.lbt” files contain data structures similar to ‘C’
prototypes, but with additional information; specifically, reference/set flags and
argument-level options.

FortranLint uses “.lbt” files to check calls to external libraries or packages. “.lbt”
files allow FortranLint to perform interface checks whether or not library source
code is available. Reference/set flags allow the user to describe individual routines
more completely than traditional prototypes, improving the accuracy of generated
reports. Argument-level options allow the user to “fine tune” interface checking
for individual routines.

The FortranLint package includes two pre-defined “.lbt” files named unixlib.lbt
and vmslib.lbt. These “.lbt” files describe standard UNIX and VMS library
routines, respectively. Note: The FortranLint package also includes the source
code for these two “.lbt” files (see section 9.2)

 To create a library template file, two steps are required:

(a) Write a text version of the file.
(b) Translate the text version to binary.

These steps are explained in sections 9.2 and 9.3, respectively.

To use an “.lbt” file, simply add it to the project file list. If external routines are
called, FortranLint will search the “.lbt” file for applicable definitions.

Note: Under UNIX, FortranLint searches unixlib.lbt automatically for external
routines, unless the routines are found in user-specified “.lbt” files. Under VMS,
FortranLint searches vmslib.lbt instead.

For additional information about the search process, see section 9.4.

72 9. Library Support

Cleanscape Software FortranLint User’s Manual Version 4.3x

9.2 Writing Library Shell Files

To create a library template (or “.lbt”) file, start by writing a library shell file.

Library shell files are simply text files containing Fortran subroutine or function
stubs.

The FortranLint package includes two sample library shell files unixlib.lsh and
vmslib.lsh. These files can be used to rebuild unixlib.lbt and vmslib.lbt,
respectively (see section 9.3). They can also be used as the starting point for new
library shell files.

Follow these guidelines:

(a) Use the filename extension ".lsh".

(b) Write one or more Fortran subroutine or function stubs. The stubs
should be named after corresponding library routines or system calls.

(c) Each stub should take the same arguments as the original routine, and

should declare the arguments using the appropriate types.

(d) Function stubs should have the same return type as the original functions.

(e) Dummy arguments may be flagged with switches to provide additional
information. (For additional information, see the following text.)

Example: This sample stub provides FortranLint with a description of the standard
UNIX exit routine (treated as a subroutine):

 subroutine exit (status)
 integer status
 end

This stub provides FortranLint with a description of the standard UNIX library
routine getcwd:

 integer function getcwd (dirname)
 character*(*) dirname
 end

As previously noted, arguments may be flagged with switches to provide additional
information. For example:

 subroutine exit (status/r)
 integer status
 end

 integer function getcwd (dirname/s)
 character*(*) dirname
 end

 9. Library Support 73

Cleanscape Software FortranLint User’s Manual Version 4.3x

The "/r" switch used here asserts that exit references the "status" argument. The
"/s" switch used here asserts that getcwd sets the dirname argument.
FortranLint takes this information into account when checking calls to these
routines.

 The following argument switches are supported:

 /l (Lower-case ell.) Asserts that the rest of the argument list (starting with

the flagged argument) is option. For example:

 integer function grade (name,class1/l,class2,class3)
 character*40 name
 integer class1,class2,class3
 end

 This stub asserts that the function “grade” takes one required argument

(name), followed by zero to three optional arguments (class1, class2, and
class3).

 /o Asserts that the flagged argument is optional. For example:

 subroutine foo (a, b/o, c/o, d/o, e)
 integer a,b,c,d,e
 end

 This stub asserts that the middle three arguments to "foo" are optional.

 /q Suppresses data-type checking and/or error #251 (scalar passed to array).

 Typically, this switch is used to flag arguments that can be represented in
different ways.

 For example, assume that a subroutine named “bar” takes a “quadword”

(64 bit) argument, and assume that “bar” doesn't care if the caller passes
a two-element array of integer*4 or a four-element array of integer*2.
In this case, the following stub could be used:

 subroutine bar (x/q)
 integer*2 x(4)
 end

 /v Asserts that the flagged argument is passed by value. For example:

 subroutine foo (n/v)
 integer n
 end

 If this stub is used, FortranLint assumes that “foo” can be called as

follows:

 call foo(%val(3))

74 9. Library Support

Cleanscape Software FortranLint User’s Manual Version 4.3x

/z Suppresses all interface checking related to the flagged argument. For
example:

 integer function foo (a,b/z)
 integer a,b
 end

If this stub is used, FortranLint checks the first argument for every call to "foo",
but does not check the second argument.

 /s Asserts that the flagged argument is set.
 /r Asserts that the argument is referenced.
 /i Asserts that the argument’s reference/set status is indeterminate.

 For example:

 subroutine modtab (a/r,b/s,c/i)
 real a,b,c
 end

This stub asserts that “modtab” references its first argument and sets its second
argument. The status of the third argument is indeterminate.

To combine two or more argument switches, use a single slash, followed by the
appropriate letters. For example, “x/or” asserts that the argument “x” is optional,
and that it is referenced.

Note: The “/s”, “/r” and/or “/I” switches cannot be combined for a given
argument.

9.3 Creating Library Template Files

To create an “.lbt” file for a specific library or package, write an appropriate
“.lsh” file (as explained in section 9.2), then execute a command similar to the
following:

 flint -L mylib.lbt mylib.lsh under UNIX
or
 flint /LIBRARY=mylib.lbt mylib.lsh under VMS

Substitute the appropriate name for “mylib”.

This command will add entries from the library shell file mylib.lsh to the library
template file mylib.lbt. If mylib.lbt doesn’t exist, it will be created. Otherwise,
the existing file will be updated.

Note: FortranLint can generate “.lbt” files directly from library sources; i.e.,
commands of the following form will work:

 flint -L mylib.lbt *.for under UNIX
or
 flint /LIBRARY=mylib.lbt *.for under VMS

 9. Library Support 75

Cleanscape Software FortranLint User’s Manual Version 4.3x

However, the “-L” and /LIBRARY options cause FortranLint to run in a
special mode which bypasses normal analysis. Consequently, input files must
be debugged and free of errors before “.lbt” files are created.

If library code is modified, repeat the original “-L” (or /LIBRARY) operation to
update the “.lbt” file. Note that FortranLint will not update “.lbt” files
automatically.

Example: To rebuild unixlib.lbt under UNIX, go to the appropriate directory and
execute:

 flint -L unixlib.lbt unixlib.lsh

To rebuild vmslib.lbt under VMS, go to the appropriate directory and execute:

 flint /LIBRARY=vmslib.lbt vmslib.lsh

9.4 Library Precedence

When analyzing calls to functions or subroutines, FortranLint uses the following
definitions (highest precedence first):

(a) Definitions found in the user's Fortran source files

(b) Definitions found in the intrinsic table associated with the selected target
compiler

(c) Definitions found in user-specified “.lbt” files

(d) Definitions found in unixlib.lbt (under UNIX) or vmslib.lbt (under

VMS)

By default, the intrinsic table takes precedence over user-specified “.lbt” files. To
search user-specified “.lbt” files before the intrinsic table, specify the option
“-Muselbt” (under UNIX) or /MISC=uselbt (under VMS). If this option is
used, (b) and (c) are reversed in the preceding list.

Note: The default system library templates unixlib.lbt and vmslib.lbt have the
lowest precedence, whether or not the uselbt option is specified.

76 9. Library Support

Cleanscape Software FortranLint User’s Manual Version 4.3x

9.5 Miscellaneous Library Issues

9.5.1 Interaction with Cross Reference and Call Trees

Cross-reference tables and call trees automatically include referenced library
routines. Cross-reference tables print library names along with routine names. Call
trees use curly braces ({}) to flag library routines.

9.5.2 File Format

“.lbt” files are revision-locked. If incompatible “.lbt” files are used, FortranLint
will print a warning message.

 10. Database Files 77

Cleanscape Software FortranLint User’s Manual Version 4.3x

10
vvv
vvv

Database Files

10.1 Overview

FortranLint can be used to create database (or “.fdb”) files for use in subsequent
analysis operations.

A database (or “.fdb”) file is a binary file that contains symbolic information
obtained from one or more FORTRAN source files.

Files with the extension “.fdb” are database files generated by FortranLint during
source code analysis. “.fdb” database files contain symbolic information for the
modules processed.

“.fdb” files may be used to re-generate cross-reference tables, call trees, diagnostic
messages, etc., without re-analysis of the original source code.

As of rev. 4.33B, “.fdb” files may also be used as libraries. In other words, “.fdb”
files can be used instead of “.lbt” files on the command line. For additional
information, see section 10.4.

10.2 Creating Database Files

To create database files, use the “-B” option (under UNIX) or /DATABASE
(under VMS) as follows:

 flint -Bdbfile foo1.f foo2.f foo3.f ... under UNIX
or
 flint /DATABASE=dbfile foo1.for foo2.for foo3.for ...
 under VMS

dbfile specifies the base name that should be used for the database. The filename
extension “.fdb” will be added automatically.

If the specified database file already exists, it will be overwritten.

To suppress console error messages during database creation, add the option
switch “-Oall” (under UNIX) or /SUPPRESS=ALL (under VMS) to the
FortranLint command line.

78 10. Database Files

Cleanscape Software FortranLint User’s Manual Version 4.3x

10.3 Using Database Files

To extract information from an existing database file, use a normal flint command
with the database file as an argument. For example:

 flint -t dbfile.fdb under UNIX
or
 flint /TREE dbfile.fdb under VMS

The command line should not specify any other database files or FORTRAN
source files.

All call tree options are available when database files are processed. Most of the
cross-reference options are available; line is an exception. “-Xline” and
/XREF=line are ignored; flint uses the line value set when the database file was
generated.

Additionally, if “unreferenced parameters” or “unused common block members”
are not selected when the database file is created, the associated messages will not
be provided by subsequent database queries.

 “.fdb” files should be regenerated whenever the associated source code is
modified.

10.4 Using FDB files as libraries.

For FLINT rev. 4.33B or later, “.fdb” files can be used as libraries. In other words,
you can specify “.fdb” files instead of “.lbt” files on the command line.

There is one special case: If the file list starts with an “.fdb” file, FLINT runs in
"database" mode, and all other file arguments are ignored. For more information
about "database" mode, see section 10.3.

Two option switches may be used to control the way “.fdb” libraries are used:

1. –Mlibcom. By default, FLINT doesn’t check source-level common blocks

against common blocks declared inside “.fdb” libraries. If "-Mlibcom" is used,
FLINT checks source-level commons against all “.fdb” files specified on the
command line. "-Mlibcom" also suppresses not-referenced/not-set messages
for commons in the user's code, which are referenced or set at the “.fdb” level.

2. –Mlibext. By default, FLINT searches all specified “.fdb” files for missing
procedures. If "-Mlibext" is used, searching is suppressed; unresolved
procedures are treated as external, whether or not they are defined inside
“.fdb” files.

Restriction:

FLINT does not yet support translation of "library shell" (.lsh) files to “.fdb”
format. (For information on “.lsh” files, see chapter 9.)

 11. Xlint Introduction 79

Cleanscape Software FortranLint User’s Manual Version 4.3x

11
vv
vv

Xlint Introduction

Xlint is a Motif-based programming tool. It is designed to provide FORTRAN
developers with an interactive graphical user interface that can be used to browse
FORTRAN source files.

Xlint operates on the database (or “.fdb”) files generated by FortranLint. With
four windows displaying information, Xlint allows the developer to step through
potential errors and to see the relationships between source code, call tree and
symbol table information, all on one screen.

Symbol cross-reference information can be automatically brought up, showing all
code references to any symbol in the analyzed program. Each occurrence of a
symbol can quickly be found in the source code; at the same time, the appropriate
node is highlighted in the displayed call tree.

80 11. Xlint Introduction

Cleanscape Software FortranLint User’s Manual Version 4.3x

 12. Learning About Xlint 81

Cleanscape Software FortranLint User’s Manual Version 4.3x

12
vvv
vvv

Learning About Xlint

This chapter will cover the basics that users need to know before running Xlint
and will help them understand the usage and function of the many options
available within this product.

12.1 Screen Layout

The Xlint screen is made up of four windows and a control panel. See Figure 12-
1.

The four windows from top to bottom are Source, Lint, Tree, and Cross
Reference. They are used to display specific information relating to the current
database being analyzed. When information in any of the windows exceeds the
size of the window, a scroll bar will appear on the bottom and/or right hand side.
Each window can be enlarged or reduced at the expense or benefit of the other
windows.

The Control Panel bar between the Source and Lint windows contains a text
input field and three buttons.

Popup menus are supported by all four windows and can be called up by a click of
the right mouse button, with the pointer anywhere in the appropriate window.
Options in the popup menus can be selected by simply holding down the right
button, dragging the pointer to the desired option, and then releasing the button.
When the button is released, the option will be set and the menu will disappear.

On-screen help is available. A help menu can be called up by a click of the left
mouse button on the help option at the top of the Xlint screen.

82 12. Learning About Xlint

Cleanscape Software FortranLint User’s Manual Version 4.3x

Fig. 12-1: Xlint window (on startup)

Source

Control
Panel

Lint Info

Call Tree

Cross
Reference

 12. Learning About Xlint 83

Cleanscape Software FortranLint User’s Manual Version 4.3x

12.2 File Menu

The File menu is used to select the database or source file.

A submenu with five options can be brought up by a click of the left mouse
button.

Load Database Used to load a pre-existing database. A database must be

loaded before symbol information can be displayed in the
windows.

View File Used to load an arbitrary file into the Source window. It

will stay loaded until an action from another window calls
up a different source file.

Save File Used to save any edits made to the file in the Source

window. Editing must be enabled first.

Enable Editing Allows the file in the Source window to be modified and

saved. Changes are only saved when the Save File menu
item is selected. When the Source window is in the editing
mode, the Disable Editing option replaces Enable
Editing in the submenu and disallows any editing in the
Source window.

Quit Exits Xlint.

12.3 Search Menu

The Search menu allows text searches on the Source window, using the currently
highlighted text as the search string.

Previous Searches backwards for the selected text.

Next Searches forwards for the selected text.

Go To Line Uses the selected text as the line number and goes to that

line. For example, if the highlighted text is the number
“27”, then if line 27 exists, the program cursor moves to
the 27th line.

12.4 Build Menu

The Build menu is used to create or update a database (.fdb) file.

84 12. Learning About Xlint

Cleanscape Software FortranLint User’s Manual Version 4.3x

The status field on the control bar shows the status of the most recent rebuild.

Configure Used to select the name of the database, the source files,

and options used during source processing.

Rebuild Runs FortranLint with the configured options and files to

regenerate the database file.

Kill Rebuild Process Stops the source processing; available only during rebuild.

Use Rebuilt Database Loads the database that was last rebuilt by the Rebuild

menu selection. This has the same effect as loading the
database from within the File menu.

View Build Output Pops up a window that shows the output from Fortran-

Lint during the rebuild process. The FortranLint output
can be used to determine why a “build” operation failed.

12.5 Source Window

The source code currently being analyzed is displayed in this window.

Action in other windows will cause files to load automatically and jump to the
appropriate point in the source. A lookup can be performed on highlighted items
that can affect the Tree and Cross Reference windows.

The popup menu can be used to select the source related to what is currently
highlighted in the other windows. With these options, users can step through the
cross-reference entries one by one or repeat a text search with a click of the
mouse.

Previous Xref Goes to the text referred by the cross-reference entry one

before the current highlight in the Cross Reference
window.

Current Xref Goes to the text referred by the cross-reference entry

currently highlighted in the Cross Reference window.

Next Xref Goes to the text referred by the cross-reference entry one

after the current highlight in the Cross Reference window.

Previous Text Goes to the previous occurrence of the text currently

highlighted in the Source window.

Next Text Goes to the next occurrence of the text currently

highlighted in the Source window.

 12. Learning About Xlint 85

Cleanscape Software FortranLint User’s Manual Version 4.3x

Lint Goes to the text referred by the lint message currently
highlighted in the Lint window.

Note: If the Lint window is currently in the “summary”
mode, the cursor in the Source window will not be
affected.

Tree Goes to the function or subroutine currently highlighted in

the Tree window.

12.6 Lint Window

The current FortranLint analysis messages pre-generated by FortranLint are
displayed in this window.

When a database is initially loaded, a summary of the FortranLint source analysis is
shown. Double-clicking an item in the summary calls up the actual instances of
that message. Double-clicking a message instance causes lookups in the other
windows specified for action in Lint's popup menu.

Summary Shows a summary of FortranLint analysis output.

Example:

 IMPLCT #125 7x: symbols were implicitly typed as *: *

where 7x means that there are 7 instances of such message.

All Messages Shows all the actual message instances of the FortranLint

source analysis. Each message includes the line number,
the subroutine it belongs to, the message number, and the
message itself.

Example:

 demo.f(33)[PRINT] #125: symbols were implicitly typed as I*4: IUNIT

Action The Action popup menu determines which of the other

windows are influenced by actions taken in the Lint
window.

If a message is double-clicked in the Lint window,
depending on the selections in the Action popup menu,
one or more of the other windows is changed to reflect the
new selection. The Tree window will change to reflect the
routine where the message was reported. The Cross
Reference window will change to reflect symbol information
associated with the message. By default, both Cross
Reference and Tree are selected.

86 12. Learning About Xlint

Cleanscape Software FortranLint User’s Manual Version 4.3x

12.7 Tree Window

This window contains a graphical representation of the program’s “call” structure,
centered around a given routine.

Each node of the call tree represents a routine. The selected routine is placed in
the center. The routines to the left and right are the predecessors and descendants
of the selected routine, respectively.

Clicking a node will highlight it and make it selectable from the popup menus of
the other windows. Double-clicking a node will re-center the tree around that
node. Double-clicking a node while holding the Shift key (<Shift>double-click)
will cause lookups in the other windows specified for action in the Tree's popup
menu.

The popup menu in the Tree window allows the tree root to be set from the
current routine in the Source, Lint, or Cross Reference window.

Selected Routine Uses the currently highlighted routine name from the

Source window or the text input field.

Routine Containing Lint Redisplays the Tree window with a tree centered

around the routine containing the current lint message.

Routine Containing Xref Redisplays the Tree window with a tree centered

around the routine containing the current Cross
Reference entry.

Action Selects the affected windows when a shift double-click

is done on a tree routine. By default, the Source and
Lint windows will reflect the change on the Tree
window.

12.8 Cross Reference Window

The Cross Reference window contains a cross-reference for the selected symbol.

Symbols may be selected by name and may contain wildcard characters. The
cross-reference entries are filtered by the settings in the Xref Filter selection box in
the Control Panel (see next section).

The following wildcard characters are accepted:

* zero or more characters
? any character

Double-clicking a cross reference entry calls up the source and/or call tree related
to that entry, depending on the action settings.

 12. Learning About Xlint 87

Cleanscape Software FortranLint User’s Manual Version 4.3x

Options available in the popup menu are as follows.

Lookup Selected Symbol

 Looks up the symbol currently highlighted in the source

window.

Lookup Tree Routine
 Allows users to look up the cross-reference messages

related to the routine currently highlighted in the Tree
window.

Lint References Shows cross-reference information regarding the lint

message highlighted in the Lint window.

Action Determines the affected windows when a double-click is

done on a cross-reference entry.

12.9 Control Panel

The control panel bar between the Source and Lint windows has four labels that
will perform various functions. A description of each option follows:

Select Allows the user to type in a symbol in the field next to the

Select option for lookup.

To perform the lookup, the user can either hit return at the
end of the text or click on the Lookup button.

Lookup Uses the highlighted text from the Source window to affect

the windows selected for action by the Source window's
popup menu.

If no text is highlighted, the text specified in the Select field
to the left will be used. If text is entered into this Select
field and <Return> is pressed, the entered text is used
regardless of what is highlighted in the Source window.

Xref Filter Calls up a selection box to select the types of symbols to

show in the Cross Reference window. Any number of
qualifiers may be selected.

Tree Brings up a selection box to set the “parent” and “child”

depths of the call tree to be displayed in the Tree window,
as well as condensing multiple calls.

88 12. Learning About Xlint

Cleanscape Software FortranLint User’s Manual Version 4.3x

Parent depth is the number of levels shown upward in the
call stack in relation to the selected tree routine. Child
depth is similar, but in a downward direction. The toggle for
Condense mode causes multiple calls from one routine to
another to be shown as one link, rather than duplicated.
Library includes the library routines defined in “.lbt” files.
Undefined shows all routines which are called, whether or
not they are defined in the current input files.

12.10 Mouse Functions

The functions of the mouse are consistent with standard Motif usage.

Left button Used to select menu options and buttons; can also be used

to highlight or mark text in the Source window.
Highlighting is accomplished by pointing to the beginning
of the text the user wishes to mark and, while holding the
left button down, dragging to the end of the text and then
releasing the left button.

Middle button Used to paste highlighted text at the current cursor location

or text prompt. Pasting or inserting cannot be done into
the Source window.

Right button Used to call up the popup menus and select the options in

these menus.

 13. Database Files and Xlint 89

Cleanscape Software FortranLint User’s Manual Version 4.3x

13
vv
vv

Database Files and Xlint

13.1 Overview

As explained in chapter 10, database (or “.fdb”) files are binary files that contain
symbolic information for one or more FORTRAN source files.

Xlint uses the information stored in “.fdb” files to browse the associated source
files and/or analysis output.

Database files may be created from the command line (using FortranLint), or they
may be generated inside Xlint. For the command-line procedure, see section 10.2.
Section 13.3 covers the Xlint procedure.

Note: This chapter assumes that the environment variable (or VMS logical)
XLINTPATH is set properly. If Xlint is being run from a directory other than
the directory that contains project sources, XLINTPATH should point to the
directory that contains the sources.

13.2 Loading Database Files

Before Xlint can be used, a database (“.fdb”) file must be loaded. To load a
database file inside Xlint, proceed as follows:

1) Select the File menu from the options at the top of the screen.

2) Select Load Database from the File menu. This will bring up a directory

and file selection screen.

3) Select the appropriate directory. To select the desired “.fdb” file,
double-click the file or click the file to highlight it and then click OK.

The “lint” summary for the specified “.fdb” file should appear in the Lint window.

Alternatively, a database file may be specified on the Xlint command line. For
additional information, see section 15.3.

90 13. Database Files and Xlint

Cleanscape Software FortranLint User’s Manual Version 4.3x

13.3 Rebuilding Database Files under Xlint

The Build menu on top of the Source window can be used to rebuild an existing
database (or to create a new one). The “build” procedure is as follows:

1) Select Configure on the Build menu. Enter the database name (without the

“.fdb” extension) in the Database field. Enter the associated source file
names in the Source Files field. Set the other options as desired. See figure
13-1.

2) Select Rebuild on the Build menu. The Status field in the Control Panel
may be used to monitor “build” status.

3) When the Status field shows “Rebuilding completed”, the new database may

be loaded. (To do this, select Use Rebuilt Database on the Build menu.)

Users may also see the FortranLint output by using the View Build Output on
the Build menu. If the “build” failed, View Build Output can be used to
determine the cause. (For additional information, see section 12.4.)

Fig. 13-1: Xlint Build-Configuration window

 14. Xlint: Getting Started 91

Cleanscape Software FortranLint User’s Manual Version 4.3x

14
vv
vv

Xlint: Getting Started

14.1 Configuration Setup

For installation instructions, see Appendix H or I.

In particular, note that a “resource file” should be copied to the appropriate
directory. (For additional information on resource files, see the installation
instructions and chapter 16.)

Also note that three UNIX environment variables (or VMS logicals) should be set
for each Xlint user:

XLINTHOME Path for the directory that contains the Xlint
support files.

XLINTHOST Network name (or node name) for the system

running the Xlint license manager.

XLINTPATH Path for the directory that contains the user's

FORTRAN source files.

14.2 Running Xlint

Before Xlint can be used, the user must create a project database (or “.fdb” file).
For additional information, see chapters 10 and 13.

To run the browser, enter the command xlint:

xlint

The Xlint menu will appear, along with four empty windows.

Next, use Load Database on the File sub-menu to load the appropriate database.
(For additional information, see section 13.2.)

92 14. Xlint: Getting Started

Cleanscape Software FortranLint User’s Manual Version 4.3x

After the “.fdb” file is loaded, source-analysis output will appear in the Lint
window.

To display all lint messages, scroll through the lint message summary. To display
all occurrences of a given message, double-click the message. The Lint window
will be updated appropriately.

For detailed information on a given occurrence, double-click the occurrence.
Xlint will display related source code, call tree output, and cross-reference
information.

For on-screen help, click the left mouse button on the Help field in the upper
right corner of the Xlint screen.

To load another database, select Load Database on the File menu.

To exit Xlint, select Quit on the File menu.

14.3 Sample Sessions

The FortranLint / Xlint package includes sample FORTRAN 77 and Fortran 90
project files.

The sample FORTRAN 77 files include demo.for (an F77 source file) and
demo.fdb (the associated database file). demo.for may be used to rebuild
demo.fdb; for additional information, see section 13.2.

Similarly, the sample Fortran 90 files include demo90.for (an F90 source file) and
demo90.fdb (the associated database file). demo90.for may be used to rebuild
demo90.fdb.

Session 1:

1) Under the FortranLint / Xlint installation directory, run:

xlint demo.fdb

This will bring up the Xlint menu and analysis output for demo.fdb.

2) To find all symbols starting with “I”, enter “I*” in the Select field on the

Control Panel and press <Return>.

This will bring up cross-reference information for all variables beginning
with the letter “I”.

3) To bring up information related to a specific symbol, double-click the

appropriate line in the Cross Reference window. For example, to display
information related to the variable “INUIT”, double-click the following line:

INUIT,I*4 variable,in demo.f(43)[PRINTIT] is Set,Actual arg

 14. Xlint: Getting Started 93

Cleanscape Software FortranLint User’s Manual Version 4.3x

The Source window should display demo.for with line 43 (containing
INUIT) highlighted. The Tree window should display a tree centered around
the PRINTIT routine. The screen should appear similar to that shown in
Figure 14-1.

4) Double-click another cross-reference entry. For example:

I, I*4 variable, in demo.f(6)[PROCDAT] is Ref

Note the changes in the Source and Tree windows.

Session 2:

1) Run:

xlint

This will bring up the Xlint menu with four empty windows.

2) Click on File in the upper left corner of the screen. Select Load Database

to bring up the Load Database dialog box. Use the Directories and Filter
options to go to the FortranLint / Xlint installation directory. Double-click
demo.fdb to select it or single-click to highlight demo.fdb and press OK.

Xlint should display analysis output for “demo.for” in the Lint window.

3) To display all the occurrences of a particular lint message, double-click the

message with the left mouse button.

For example, double-click the following message:

IMPLCT #125 7x: symbols were implicitly typed as *: *

to display all occurrences of IMPLCT #125. Note that 7x means that there
are 7 instances of this message.

4) After all instances are displayed, double-clicking one of the instances will

display information related to the instance.

For example, double-click the following instance:

demo.f(33)[PRINT] #125: symbols were implicitly typed as I*4:
IUNIT

The Source window should display source code with the highlight on IUNIT
in line 33. The Tree window should display a call tree centered around the
PRINT routine. In the Cross Reference window, the following line should
be highlighted:

IUNIT, I*4 variable, in demo.f(33)[PRINT] is Dummy arg

94 14. Xlint: Getting Started

Cleanscape Software FortranLint User’s Manual Version 4.3x

5) Double-click a lint instance that is not currently highlighted. For example:

demo.f(49)[DIPSTAT] #125: symbols were implicitly typed as
R*4: PRINT

The Source window now redisplays the source file with the highlight on
“PRINT” in line 49. The Tree window shows a tree centered around
DIPSTAT. The Cross Reference window shows the following information:

PRINT, subroutine, in demo.f(49)[DIPSTAT] is called

6) To see the lint summary again, use the right mouse button to select Summary

in the Lint window.

Fig. 14-1: Xlint Window for Sample Sessions 1 and 2

 15. More About Xlint 95

Cleanscape Software FortranLint User’s Manual Version 4.3x

15
vv
vv

More About Xlint

15.1 Resizing Windows

Any of the Source, Lint, Tree, or Cross Reference windows in the Xlint screen can
be enlarged or reduced at the expense or benefit of the other windows. To resize
a window, press the left or middle mouse button on the small box between two
windows, and drag it to the new boundary line users desire. Then release the
button.

When the information in any of the windows exceeds the size of the window, a
scroll bar will appear on the bottom and/or right hand side of the window.

15.2 Window Interaction

Window interaction is controlled by the Action sub-menu in each of the Lint,
Tree, and Cross Reference windows. The settings in these Action menus
determine how changes in that particular window will affect the other windows.
Depending on the action settings, all the windows may be updated to reflect
information relative to the changed window.

To view or change the action settings for a particular window, move the mouse
cursor to any location within that window and press the right mouse button. The
popup menu for that window will now be displayed. Move the mouse to the
Action option and press the right button again. The action options will now be
displayed. To toggle an option on or off, simply point to that option box, and
press the right mouse button.

The default settings for window interaction are set so that an action in any window
will affect the others. For example, if the user double-clicks a cross-reference
entry, the corresponding source code and the tree information will appear in the
Source and Tree windows.

96 15. More About Xlint

Cleanscape Software FortranLint User’s Manual Version 4.3x

15.3 Command-Line Options

Xlint supports the standard “X” command-line options (i.e., -bg, -fg, -display,
etc...). For additional information on these options, see the system vendor’s “X”
documentation.

Additionally, a database (“.fdb”) file may be specified on the command line. For
example:

xlint foo.fdb

To specify an alternate resource file (e.g., bar.dat), use an option of the following
form:

xlint -rf bar.dat

This option loads both the default resource file and the user-specified file.
Options in the user-specified file take precedence.

15.4 Advanced Example

The following session will use “demo.fdb” as the example. A screenshot of the
sample session is shown in Figure 15-1.

Sample session 3:

1) In the FortranLint / Xlint installation directory, run:

xlint demo.fdb

This will bring up an Xlint screen with analysis output for the “demo”
project in the Lint window.

2) Click the left mouse button to bring up the File menu. Select the View File

command. Select “demo.for” (or “demo.f”). The Source window should
display FORTRAN source code for the “demo” project.

3) Symbols can be located throughout the loaded source file by highlighting the

text of a symbol in the Source window, clicking the right mouse button to
bring up the popup menu, and selecting Next Text. For instance, highlight
“PRINT” in line 9 in the Source window.

To search for the next “PRINT” in “demo.for”, click the right mouse button
anywhere in the Source window to call up the popup menu. Select Next
Text.

The next “PRINT” highlighted in the Source window is in the SETTYPE
subroutine.

 15. More About Xlint 97

Cleanscape Software FortranLint User’s Manual Version 4.3x

4) To see all occurrences of “PRINT”, use the right mouse button in the Cross
Reference window to call up the submenu. Choose Lookup Selected
Symbol.

5) To make a cross-reference entry available as a selection for the Source

and/or Tree windows, highlight the entry using a click of the left mouse
button. For example:

PRINT, subroutine, in demo.f(33)[PRINT] is defined

6) To see the tree related to this highlighted cross-reference entry, use the right

mouse button to select the Routine Containing Xref in the Tree's popup
menu.

The Tree window shows a call tree centered around the PRINT routine.

7) To see where in the source code the highlighted “PRINT” in the Cross

Reference window refers to, use the right mouse button to select “Current
Xref” in the Source window.

The highlight in the Source window now moves to the symbol “PRINT” in
line 33.

Note that the combined result of steps 5-7 can be done by simply
double-clicking the cross-reference entry in step 5.

8) <Shift> double-click the SETTYPE routine in the Tree window. The

Source window moves the highlight to “SETTYPE” in line 27. The Cross
Reference window shows all the cross-reference information about
SETTYPE.

Users can change the setting for any window at any time. For example, the depth
of the parent or child tree in the Tree window can be changed by using the Tree
Option in the Control Panel. The tree will be redisplayed with the new depth.

98 15. More About Xlint

Cleanscape Software FortranLint User’s Manual Version 4.3x

Fig. 15-1: Xlint Window for Sample Session 3

 16. Resource Files 99

Cleanscape Software FortranLint User’s Manual Version 4.3x

16
vv
vv

Resource Files

16.1 Overview

A resource file is an ASCII text file that contains the configuration information
needed for Xlint to run. Xlint resource files conform to the standard X Window
resource file conventions.

The default resource file is named Xlint (under UNIX) or XLINT.DAT (under
VMS). It is strongly suggested that the original copy of this resource file not
be altered. If users need to modify the default configuration, they should create
modified copies.

Users may load modified versions of the resource file in various ways; for
additional information, see section 16.2.

16.2 Xlint and XLINT.DAT

The Xlint resource file is named Xlint (under UNIX) or XLINT.DAT (under
VMS).

A copy of this file should be placed in the home directory for each Xlint user. By
default, Xlint uses this copy. Users may specify alternate versions on the Xlint
command line; for additional information, see section 15.3.

Alternatively, under UNIX, users may set the standard environment variable
XAPPLRESDIR or use the standard app-defaults directory.

Under VMS, two logicals DECW$SYSTEM_DEFAULTS and DECW$USER_
DEFAULTS are used. To install a copy of XLINT.DAT for system-wide use,
place it in the directory specified by DECW$SYSTEM_DEFAULTS. To install
a copy of XLINT.DAT for use by an individual user, place it in the directory
specified by DECW$USER_DEFAULTS for that user.

100 16. Resource Files

Cleanscape Software FortranLint User’s Manual Version 4.3x

If Xlint finds copies of the resource file in two or more places, all of the specified
options are used, but options in individual user resource files take precedence over
options in system-wide resource files.

If a resource file is specified on the Xlint command line, options in the specified
file take precedence. For additional information, see section 15.3.

Cleanscape Software FortranLint User’s Manual Version 4.3x

101

 Appendices

Cleanscape Software FortranLint User’s Manual Version 4.3x

 Appendix A. Installation Under UNIX 103

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix A
vv
vv

Installation Under UNIX

A.1 Pre-installation

Starting with revision 2.81, FortranLint incorporates a license manager that
requires a daemon to be loaded before the product will run. The daemon is called
iptlm for versions below 2.90 and iptlmd for versions 2.90 and above.

The daemon can be started by non-privileged users. However, root privileges are
required if the product is to be installed in system directories.

Note: The FortranLint “installation directory” mentioned in the following sections
is the directory that contains the FortranLint support files (for example, flint.err
and flint.cfg).

A.2 Installation Procedure

1. Log in as system manager.

2. Create a temporary directory. Go to the new directory.

3. Insert the tape (or other media) provided and enter a command of the form:

 tar xvf /dev/device_name

where device_name is the UNIX device name for the media used (1/4”
cartridge tapes, 3 1/2” floppy diskettes, etc.).

104 Appendix A. Installation Under UNIX

Cleanscape Software FortranLint User’s Manual Version 4.3x

4. Step 3 will load a number of files, including:

 demo.f demo source files
 demo.inc demo include file
 demo90.f90 demo90 source files
 demo90.inc demo90 include file
 flint.1 man page
 flint.cfg flint default configuration file
 flint.err error message text
 flint.hls flint help file
 unixlib.lsh standard UNIX library description text
 unixlib.lbt standard UNIX library file
 vmslib.lsh standard VMS library description text
 vmslib.lbt standard VMS library file

The basic executables include:

 demo demo script
 demo90 demo90 script
 flint FortranLint executable
 flpatch executable patch program
 install_flint installation script for FortranLint
 iptlma license administration program
 iptlmd license manager daemon
 iptlmr license usage report generator

Multiple versions of flint may be loaded. For example, flint_sun4 is the
executable for SUN 4 systems. The installation procedure will select the
correct version and rename it appropriately.

If the Xlint option was purchased, the following additional files will be
loaded:

 demo.fdb database generated from demo.f
 demo90.fdb database generated from demo90.f90
 xlint Xlint executable
 Xlint Xlint resource file

5. After the tape is loaded, run install_flint and follow the instructions on the

screen.

 Appendix A. Installation Under UNIX 105

Cleanscape Software FortranLint User’s Manual Version 4.3x

6. Modify the user configuration for each FortranLint user as follows:

(a) Set the environment variable FLINTHOST to the host name for the
server where the license manager is installed. (To obtain the host
name, execute the UNIX command hostname on the server.)

(b) Set the environment variable FLINTHOME to a full path for the

directory, which contains the FortranLint support, files (flint.err,
etc.).

For example, if the user is using csh, use commands of the form:

setenv FLINTHOST hostname
setenv FLINTHOME installation_directory

If the user is using sh, use commands of the form:

FLINTHOST=hostname; export FLINTHOST
FLINTHOME=installation_directory; export FLINTHOME

7. Add $FLINTHOME to the user's search list.

For csh users, use a command of the form:

set path=($path $FLINTHOME)

For sh users, use a command of the form:

PATH=$FLINTHOME:$PATH

To make the changes permanent, add the new commands to the appropriate
login scripts. For example, for csh users, modify “.cshrc”.

8. Optional: The FortranLint package includes a utility program named flpatch

that can be used to patch the FortranLint installation directory and server
host name directly into the flint executable.

To patch the executable, use commands of the form:

flpatch flint host hostname
flpatch flint home installation_directory

For additional information on FLPATCH, see section A.4.

9. Users are now ready to activate FortranLint.

106 Appendix A. Installation Under UNIX

Cleanscape Software FortranLint User’s Manual Version 4.3x

A.3 Activation Procedure

Every FortranLint license must be assigned a unique authorization number (or
“activation key”) by Cleanscape before the package will run.

1. To proceed, execute the following command:

 flint activate

The software will provide users with a server code, and it will prompt them
to call Cleanscape for activation. If users have not already received an
activation key, they will need to contact Cleanscape. Cleanscape will then
generate an activation key based on the server code.

2. Once the activation key is acquired, execute the following command:

 flint activate

again, and enter the activation code when prompted.

Note: A file called 02.lic or 07.lic will be created in the FortranLint
installation directory. This file stores information related to the activation
key.

3. The activation procedure in step 2 also creates a script file called startup

under the installation directory. This file will allow users to load the daemon
from the command line. Users will need to run startup every time they
reboot their system or kill the license manager.

After the key file has been successfully installed in the installation directory,
FortranLint will ask users if they want to put a command to start the license
daemon in the system boot file (/etc/rc.local).

If users answer “yes”, the license manager daemon will be started automatically
whenever the system is booted. To complete the installation procedure, in this
case, simply reboot the system. However, users must have sufficient privileges
to do so.

If users answer “no”, they will need to start the daemon manually if they
reboot the system or kill the daemon.

4. If users have elected not to have the boot file modified, they need to run:

 $FLINTHOME/startup

at the next prompt to start the daemon.

After being started, the daemon requires a three minute period for
initialization.

 Appendix A. Installation Under UNIX 107

Cleanscape Software FortranLint User’s Manual Version 4.3x

5. When three minutes are up, enter the command:

 flint

FortranLint should display a “help” screen:

FORTRAN-lint Rev 4.30 6-Mar-99 10:49:55 Page 1

Usage: flint [options] [file1 [file2...]] [file.lbt] [file.fdb]

Source configuration options: Diagnostic options:
-d process debug lines -a ANSI compatibility
-e 132 column source lines -f report FYIs
-I path include file search path -g global processing
-p preprocess sources (cpp) -m flag implicit types
-R form source form -O num omit selected messages
-V sys select FORTRAN dialect -P sys portability issues
-2 two byte ints & logicals -u data usage checking (dflt)
-7 set language to FORTRAN 77 -w report warning (dflt)
-9 set language to Fortran 90

Output control options:
-l source listing Miscellaneous options:
-I show include files -C opts generate Cadre data files
-s statistics -D defs #defines for preprocessor
-W num set page width -E file expand file on cmmd line
-Y num set page length -L file library generation mode
-S file split output to files -M opts miscellaneous options
-+ summary mode (implies -S) (-Mhelp for more info)
-B file create database (.fdb) -q do not wait for license
-x cross reference
-X opts cross reference format / content (-Xhelp for more info)
-t call tree
-T opts call tree format / content (-Thelp for more info)

Lowercase options may be combined; use double dash to disable (--w).
Uppercase options take parameters (w/ or w/o space) and do not combine.

6. FortranLint is now ready for use.

Note: At this point, Xlint may be installed. For additional information, see
Appendix H.

A.4 Patching FortranLint

Some of the default parameters in FortranLint can be modified within the
FortranLint executable. This is accomplished using the “flpatch” program. This
program takes the following command-line arguments:

1st: name of the executable (required)
 2nd: parameter to patch
 3rd: desired value

If the second or third arguments are not given, the user will be prompted for
them.

108 Appendix A. Installation Under UNIX

Cleanscape Software FortranLint User’s Manual Version 4.3x

 The patchable parameters in FortranLint are:

Name Description Default value

home installation directory /usr/local/flint
host license server host ?
preprocessor path of C preprocessor /usr/lib/cpp
bootfile system boot file /etc/rc.local

(a) The home parameter sets the default for the directory of the FortranLint

support files.

home can be overridden by the environment variable FLINTHOME.

(b) The host parameter is used by the license manager to locate the machine on

which the license manager daemon is running. This helps improve
performance since the application does not have to search the entire network
for the location of the daemon. This parameter is set during the installation
procedure and need not change, except in the event of changing the
hostname of the current machine.

host can be overridden by the environment variable FLINTHOST.

For the daemon hostname, there are two special values:

 (1) a ? causes a system-wide search for the daemon
 (2) a ! causes an error to be reported unless FLINTHOST is set

(c) The preprocessor parameter allows FortranLint to pass the source code

through a preprocessor, usually cpp, before analyzing it. The preprocessor
must take the same arguments as cpp.

(d) The bootfile parameter sets the name of the boot file, which can optionally

be modified during the activation procedure to automatically start the license
daemon when rebooting the system.

 Appendix B. Installation Under VMS 109

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix B
vv
vv

Installation Under VMS

B.1 Pre-installation

Starting with revision 2.82, FortranLint incorporates a license manager that
requires a detached process to be loaded before the product will run. The daemon
is called iptlm for versions below 2.90, and iptlmd for versions 2.90 and above.

Installation can be done by non-privileged users. However, root privileges are
required if the product is to be installed in system directories.

Note: The FortranLint “installation directory” mentioned in the following sections
is the directory that contains the FortranLint support files (for example, flint.err
and flint.cfg).

B.2 Installation Procedure

1. Log in as system manager.

2. Create an installation directory. Go to the new directory.

3. Load the tape (or other media) provided and execute commands of the

following form:
 MOUNT /FOR device_name
 BACKUP /LOG device_name:FLINT []

DISMOUNT device_name

 where device_name is the VMS device name for the media used (TK-50

cartridge tape, 1600 bpi mag tape, etc.).

110 Appendix B. Installation under VMS

Cleanscape Software FortranLint User’s Manual Version 4.3x

4. Step 3 will load a number of files, including:

 DEMO.FOR demo source files
 DEMO.INC demo include file
 DEMO90.F90 demo90 source files
 DEMO90.INC demo90 include file
 FLINT.CFG FLINT default configuration file
 FLINT.ERR error message text
 FLINT.HLP FLINT help file, use with VMS HELP
 FLINT.HLS FLINT help file, command line options
 VMSLIB.LSH standard VMS library description text
 VMSLIB.LBT standard VMS library file
 UNIXLIB.LSH standard UNIX library description text
 UNIXLIB.LBT standard UNIX library file

The basic executables include:

 DEMO.COM demo script
 DEMO90.COM demo90 script
 IPTLMA.EXE license administration program
 IPTLMD.EXE license manager detached process
 IPTLMR.EXE license usage report generator
 FLINT.EXE FortranLint executable
 FLPATCH.EXE executable patch program

If the Xlint option was purchased, the following additional files will be
loaded:

 DEMO.FDB database file for demo.for
 DEMO90.FDB database file for demo90.f90
 XLINT.DAT Xlint resource file
 XLINT.EXE Xlint executable file

5. Modify the user configuration for each FortranLint user as follows:

(a) If the FortranLint license manager is installed on a DECNET server,
set the logical FLINTHOST to the node name for the server.
Otherwise, set FLINTHOST to “NO_DECNET”.

Note: To obtain the node name, execute the command “show logical
SYS$NODE” on the server. Discard any “colon” characters.

define FLINTHOST “node_name”

(b) Set the logical FLINTHOME to a full path for the FortranLint

installation directory.

define FLINTHOME $disk:[installation_directory]

(c) Define the symbol FLINT as a foreign command to execute

FLINT.EXE (located in the installation directory):

 FLINT :== $FLINTHOME:FLINT.EXE

 Appendix B. Installation Under VMS 111

Cleanscape Software FortranLint User’s Manual Version 4.3x

(d) Define the symbol FLPATCH as a foreign command to execute
FLPATCH.EXE (located in the installation directory):

FLPATCH :== $FLINTHOME:FLPATCH.EXE

To make the changes permanent, add the new commands to the appropriate
LOGIN.COM files.

 Example:

DEFINE FLINTHOST “GUMBY”
DEFINE FLINTHOME $disk3:[USR.PETER.FLINT]

 FLINT :== $FLINTHOME:FLINT.EXE
FLPATCH :== $FLINTHOME:FLPATCH.EXE

6. Optional: The FortranLint package includes a utility program named

FLPATCH.EXE that can be used to patch the host directory path and
server node name directly into the FLINT.EXE executable.

To patch the executable, use commands of the form:

FLPATCH FLINT.EXE HOME $disk:[directory_path]
FLPATCH FLINT.EXE HOST “node_name”

disk:[directory_path] should specify the FortranLint installation directory.
node_name should be the appropriate node name (or “NO_DECNET”), as
explained in step 5.

For additional information on FLPATCH, see section B.4.

7. Users are now ready to activate FortranLint.

B.3 Activation Procedure

Each FortranLint license must be assigned a unique authorization number (or
“activation key”) by Cleanscape before the package will run.

1. To proceed, execute the following command:

 flint /license=activate

The software will provide users with a server code, and it will prompt them
to call Cleanscape for activation. If users have not already received an
activation key, they will need to contact Cleanscape. Cleanscape will provide
an activation key based on the server code.

112 Appendix B. Installation under VMS

Cleanscape Software FortranLint User’s Manual Version 4.3x

2. After the activation code is obtained, execute the command:

 flint /license=activate

again, and enter the activation code when prompted.

Note: A file called 02.lic or 07.lic will be created in the FortranLint
installation directory. This file stores information related to the activation
key.

3. The activation procedure in step 2 also creates a script file called

STARTUP.COM in the installation directory. This file will allow users to
load the daemon from the command file. To start the license daemon,
execute the following command:

@FLINTHOME:startup

Users will need to run @FLINTHOME:STARTUP if they reboot the
system or kill the detached process. Alternatively, add this command to the
appropriate system startup script.

4. The startup script in step 3 requires a three-minute period for initialization.

When the three minutes are up, enter the command:

 flint

FortranLint should display a “help” screen:

FORTRAN-lint Rev 4.30 6-Mar-99 10:49:55 Page 1

Source configuration options: Diagnostic options:
/DLINES -- process debug lines /ANSI -- ANSI compatibility
/EXTEND -- 132 column source lines /FYI -- report FYIs
/FORM=s -- source form /GLOBAL -- global processing
/LANG=c -- select language /IMPLICIT -- flag implicit types
/NOI4 -- two byte ints & logicals /PORT=sys -- portability issues
/PATH=path -- include file search path /NOUSAGE -- suppress usage checking
/SYS=sys -- target compiler / system /NOWARN -- suppress warnings
/SUPP=n -- suppress message #n

Output control options: Miscellaneous options:
/LIST -- source listing /FILES=f -- filename/options file
/INCLUDE -- show include files /LIB=f -- library generation mode
/STAT -- statistics /MISC=opt -- miscellaneous options
/WIDTH=n -- set page width /MISC=help -- for more info
/LPP=n -- set page length /UNIXHELP -- UNIX-style option help
/OUT=f -- redirect output to file -? -- UNIX-style option help
/SPLIT=f -- split output to files
/DATA=f -- create database (.FDB)
/SUMMARY -- summary mode (implies /SPLIT)
/XREF(=c) -- cross reference (/XREF=help for more info)
/TREE(=c) -- call tree (/TREE=help for more info)

5. FortranLint is now ready for use.

Note: At this point, Xlint may be installed. For additional information, see
Appendix I.

 Appendix B. Installation Under VMS 113

Cleanscape Software FortranLint User’s Manual Version 4.3x

B.4 Patching FortranLint

Some of the default parameters in FortranLint can be modified within the
FortranLint executable. This is accomplished using the FLPATCH program.
This program takes three command-line arguments:

 1st: name of the executable (required)
 2nd: parameter to patch
 3rd: desired value

If the second or third arguments are not given, the user will be prompted for
them.

The patchable parameters in FortranLint are:

Name Description Default value

home installation directory “!”
host license server host “NO_DECNET”

To patch FortranLint, use a command of the following form:

FLPATCH flint.exe home $disk2:[appl.FLINT]

a) The home parameter sets the default for the application support directory.

home can be overridden by the system logical FLINTHOME.

The default value “!” for the home parameter indicates that the installation
directory is not specified. Unless the FLINTHOME logical is specified, an
error message will be issued reporting that the product is not yet installed.

b) The host parameter is used by the license manager to locate the machine on

which the license manager detached process is running.

If the license manager is not installed on a DECNET server, this parameter
should be set to “NO_DECNET”.

The host parameter can be overridden by setting the logical FLINTHOST.

For the detached process hostname, there are two special values:

1) a ? causes a system-wide search for the detached process.
2) a ! causes an error to be reported unless FLINTHOST is set.

114 Appendix B. Installation under VMS

Cleanscape Software FortranLint User’s Manual Version 4.3x

 Appendix C. License Manager 115

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix C
vv
vv

License Manager

Starting with version 2.81, FortranLint incorporates a license manager that requires
a daemon to be loaded before the product will run. This daemon is called iptlm
for versions below 2.90 and iptlmd for versions 2.90 and above.

C.1 License Manager Commands

C.1.1 User Commands

1) By default, FortranLint will queue a job when there are no more licenses

available. The “-q” option under UNIX or “/quit” under VMS when added
to the “flint” command line will force the application to quit when there are
no available licenses.

flint -q [options] files under UNIX

or
flint /quit [options] files under VMS

2) FortranLint needs to identify the node on which the license manager was

loaded. To accomplish this, it uses the UNIX environment variable (or VMS
logical) FLINTHOST.

To define FLINTHOST under UNIX, use commands of the form:

setenv FLINTHOST hostname for csh users

or
FLINTHOST=hostname for sh users
export FLINTHOST

hostname should be the network name of the user's license server host. (To
obtain the host name under UNIX, execute the command hostname on the
server.)

116 Appendix C. License Manager

Cleanscape Software FortranLint User’s Manual Version 4.3x

 To define FLINTHOST under VMS, use a command of the form:

define FLINTHOST “nodename”

If the license server is installed on a DECNET host, nodename should be the
node name of the host. Otherwise, nodename should be “NO_DECNET”.

(To obtain the node name under VMS, execute the command “show logical
SYS$NODE” on the server. Discard any “colon” characters.)

3) Another environment variable (or logical) FLINTHOME tells FortranLint

where the installation directory is located. This variable can be used to
override the directory value patched into the executable during installation.

To define FLINTHOME under UNIX, use commands of the form:

setenv FLINTHOME directory for csh users

or
FLINTHOME=directory for sh users
export FLINTHOME

directory should be a full path.

To define FLINTHOME under VMS, use a command of the form:

define FLINTHOME $disk:[installation_directory]

4) Under VMS, the qualifier /system may be added to the commands in 2) and

3) to place the definitions of FLINTHOST and FLINTHOME in the
system logical table. Note that users need to log in with SYSNAM privileges
to add definitions to the system logical table.

C.1.2 Administrative Commands

Under UNIX Under VMS Description

flint activate flint /license=activate Enter an activation key

flint users flint /license=users Show active users (outstanding licenses)

flint servers not supported List active license daemons

flint report flint /license=report Produce cumulative usage report

flint daily flint /license=daily Produce daily usage report

flint kill flint /license=kill Kill license daemon (superuser)

 Appendix C. License Manager 117

Cleanscape Software FortranLint User’s Manual Version 4.3x

C.1.3 License Manager Options (at daemon startup only)

1) iptlmd -e dir:dir:dir... Key file directories (required)

Directories must be full pathnames separated by colons.

2) iptlmd -r file Reserve file

This file allows licenses to be reserved for specific users or machines.

The format of this file is:

product:group:client1,...,clientn:K

Each group, with the client members, has K licenses for FortranLint .

If users are using UNIX based systems, the group name is unrelated to the
UNIX system group names. It is only the name you wish to call this group
of users.

A client is either a user name or a host name preceded by the at sign (“@”).

Example:

flint:hackers:wendy,jeff,sara,fred:3
flint:lab:@gumby:1

Here Fred is a user name, and @gumby is a host name.

Comment lines begin with “#”.

3) iptlmd -l logfile Log file (needed for usage reports; recommended).

4) iptlmd -m size Maximum log file size. This limits the size of the log

file. When this size is reached, the log file is copied to
file.old and is cleared. The size is given as a floating
number followed by either “m” for megabytes or “k”
for kilobytes.

 Examples: -m 100k

-m 0.5m

5) iptlmd -v # Log file verbosity. The default value is 3. Lower

numbers produce less output and higher numbers
produce more output.

6) iptlmd -f Run in foreground. The license manager normally

“backgrounds” itself and exits. This option keeps it in
the foreground.

118 Appendix C. License Manager

Cleanscape Software FortranLint User’s Manual Version 4.3x

 Appendix D. Sample Output: Fortran 90 119

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix D
vv
vv

Sample Output: Fortran 90

D.1 Sample Fortran 90 Program

MODULE M
 TYPE MYTYPE
 CHARACTER*10 NAME
 INTEGER(KIND=4) SCORES(2,2)
 END TYPE

 REAL, PRIVATE :: LOC(10)
 INTEGER AVE
 CHARACTER*2 GRADE(6)
 PARAMETER (GRADE = (/'A', 'B', 'C', 'D', 'E', 'F'/))

CONTAINS
! ------ Internal subprograms --------
 SUBROUTINE M_INNER(TYPE1, TYPE2)
 TYPE (MYTYPE), INTENT(INOUT) :: TYPE1
 TYPE (MYTYPE), INTENT(IN) :: TYPE2
 TYPE1%NAME = 'ALIAS: ' // TYPE2%NAME
 END SUBROUTINE M_INNER

END MODULE

SUBROUTINE OUTER(TYPE1, TYPE2, OPDUM)
C ----- Declaration -----
 USE M, ONLY : MYTYPE
 TYPE (MYTYPE), INTENT(INOUT) :: TYPE1, TYPE2
 INTEGER, OPTIONAL :: OPDUM
C ----- Double TYPE2's scores.
 if (PRESENT(OPDUM)) THEN
 TYPE1%SCORES(1, 1) = TYPE2%SCORES(1) * OPDUM
 ELSE
 TYPE1%SCORES(1, 1) = TYPE2%SCORES(1, 1) * 2
 ENDIF
 END SUBROUTINE

PROGRAM MAIN
! --------- Main program --------

 USE M, TYPE_S => MYTYPE, &
 MYLOC => LOC !private module entities cannot be accessed
 CHARACTER(LEN = 10) STR
 TYPE (TYPE_S) STUDENT1, STUDENT2

 CALL M_INNER(STUDENT1, STUDENT2)
 CALL OUTER(STUDENT1, STUDENT2)
 STR = GRADE(3)
 AVE = MAIN_INNER(STUDENT1%SCORES)

CONTAINS
! Internal subprograms are in another file
 INCLUDE 'demo90.inc'
END

120 Appendix D. Sample Output: Fortran 90

Cleanscape Software FortranLint User’s Manual Version 4.3x

! ** demo90.inc **
FUNCTION MAIN_INNER(DUM)
 REAL, INTENT(INOUT) :: DUM(:, :)
 REAL (KIND=KIND(0.0D0)) :: SUM = 0
 DONAME1: DO 10 I = 10, SIZE(DUM, 1)
 DONAME2: DO 20 J = 10, SIZE(DUM, 2)
 IF (SUM < 0) CYCLE DONAME2
 SUM = SUM + DUM(I, J)
 IF (SUM > 100) EXIT DONAME1
20 END DO DONAME2
10 END DO DONAME1
 MAIN_INNER = INT (SUM)
END FUNCTION

D.2 Analysis Output

Under UNIX:

FortranLint Rev 4.30 6-Mar-97 10:49:55 Page 1

Default options: -w -u -O207,276,76,261 -Ttrim -Xno_unreferenced_parameters
 -Xno_unused_common_variables
Command options: -f -g -s -t -x -Sdemo90

demo90.f90

 Subroutine M_INNER File demo90.f90 Line 16
 <Module subprog of M>

> TYPE1%NAME = 'ALIAS: ' // TYPE2%NAME
> ^
demo90.f90:M_INNER line 19:
SYNTAX FYI #105- string will be truncated (from 17 to 10 chars).

 Subroutine OUTER File demo90.f90 Line 25

> TYPE1%SCORES(1, 1) = TYPE2%SCORES(1) * OPDUM
> ^
demo90.f90:OUTER line 32:
SYNTAX ERROR #168- array referenced with too few subscripts.

 Program MAIN File demo90.f90 Line 38

> USE M, TYPE_S => MYTYPE, &
> MYLOC => LOC !private module entities cannot be accessed
> ^
demo90.f90:MAIN line 42:
SYNTAX ERROR #661- entity not accessible in module M.

> CALL M_INNER(STUDENT1, STUDENT2)
> ^
demo90.f90:MAIN line 46:
INTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (same format
but different names).

> CALL M_INNER(STUDENT1, STUDENT2)
> ^
demo90.f90:MAIN line 46:
INTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (same format
but different names).

> CALL OUTER(STUDENT1, STUDENT2)
> ^

 Appendix D. Sample Output: Fortran 90 121

Cleanscape Software FortranLint User’s Manual Version 4.3x

demo90.f90:MAIN line 47:
INTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (same format
but different names).

> CALL OUTER(STUDENT1, STUDENT2)
> ^
demo90.f90:MAIN line 47:
INTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (same format
but different names).

> AVE = MAIN_INNER(STUDENT1%SCORES)
> ^
demo90.f90:MAIN line 49:
INTERFACE ERROR #252- I*4 array passed to dummy arg which is a R*4 array.

demo90.f90:MAIN line 46:
USAGE ERROR #126- local variable STUDENT2 is referenced but never set.

demo90.f90:MAIN line 48:
USAGE WARNING #127- local variable STR is set but never referenced.

 Function MAIN_INNER File demo90.f90 Line 53
 <Internal subprog of MAIN>

Global checking:

USAGE WARNING #743- module entity set but not referenced: M:AVE

USAGE FYI #744- unused module entity: M:LOC

Under VMS:

FortranLint Rev 4.30 6-Mar-97 10:49:55 Page 1

Local options: /WARNINGS /USAGE /SUPPRESS=207,276,76,261 /NOTREE /NOXREF
Command options: /FYI /GLOBAL /STATISTICS /OUTPUT=demo90

DEMO90.F90;403

 Subroutine M_INNER File DEMO90.F90 Line 16
 <Module subprog of M>

> TYPE1%NAME = 'ALIAS: ' // TYPE2%NAME
> ^
DEMO90.F90:M_INNER line 19:
SYNTAX FYI #105- string will be truncated (from 17 to 10 chars).

 Subroutine OUTER File DEMO90.F90 Line 25

> TYPE1%SCORES(1, 1) = TYPE2%SCORES(1) * OPDUM
> ^
DEMO90.F90:OUTER line 32:
SYNTAX ERROR #168- array referenced with too few subscripts.

 Program MAIN File DEMO90.F90 Line 38

> USE M, TYPE_S => MYTYPE, &
> MYLOC => LOC !private module entities cannot be accessed
> ^

122 Appendix D. Sample Output: Fortran 90

Cleanscape Software FortranLint User’s Manual Version 4.3x

DEMO90.F90:MAIN line 42:
SYNTAX ERROR #661- entity not accessible in module M.

> CALL M_INNER(STUDENT1, STUDENT2)
> ^
DEMO90.F90:MAIN line 46:
INTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (same format
but different names).

> CALL M_INNER(STUDENT1, STUDENT2)
> ^
DEMO90.F90:MAIN line 46:
INTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (same format
but different names).

> CALL OUTER(STUDENT1, STUDENT2)
> ^
DEMO90.F90:MAIN line 47:
INTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (same format
but different names).

> CALL OUTER(STUDENT1, STUDENT2)
> ^
DEMO90.F90:MAIN line 47:
INTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (same format
but different names).

> AVE = MAIN_INNER(STUDENT1%SCORES)
> ^
DEMO90.F90:MAIN line 49:
INTERFACE ERROR #252- I*4 array passed to dummy arg which is a R*4 array.

DEMO90.F90:MAIN line 46:
USAGE ERROR #126- local variable STUDENT2 is referenced but never set.

DEMO90.F90:MAIN line 48:
USAGE WARNING #127- local variable STR is set but never referenced.

 Function MAIN_INNER File DEMO90.F90 Line 53
 <Internal subprog of MAIN>

Global checking:

USAGE WARNING #743- module entity set but not referenced: M:AVE

USAGE FYI #744- unused module entity: M:LOC

 Appendix D. Sample Output: Fortran 90 123

Cleanscape Software FortranLint User’s Manual Version 4.3x

D.3 Statistics Output

>>> Statistics:

 Number of source files: 1

 Source files: 54 lines, 1273 bytes (18% comments, 82% code)
 Include files: 14 lines, 352 bytes (5% comments, 95% code)
 Total parsed: 68 lines, 1625 bytes (15% comments, 85% code)

 Total subprograms: 5
 Subroutines: 2
 Functions: 1
 Program: 1
 Block Data: 0
 Modules: 1

Individual message summary

INTRFC FYI #256- 4x: * passed to a * dummy arg (same format but different
 names).
SYNTAX FYI #105- 1x: string will be truncated (from * to * chars).
USAGE ERR #126- 1x: local variable * is referenced but never set.
USAGE WARN #127- 1x: local variable * is set but never referenced.
SYNTAX ERR #168- 1x: array referenced with too few subscripts.
INTRFC ERR #252- 1x: * array passed to dummy arg which is a * array.
SYNTAX ERR #661- 1x: entity not accessible in module *.
USAGE WARN #743- 1x: module entity set but not referenced: *, *
USAGE FYI #744- 1x: unused module entity: *, *

Total messages: 12

 Errors Warnings FYIs
 -------- -------- --------
 Syntax: 2 0 1
 Interface: 1 0 4
 Data usage: 1 2 1

 Implicit typing: <supp>

D.4 Call Tree

This is a primary tree starting at the program 'MAIN':

MAIN-+-M
 |
 +-M_INNER
 |
 +-OUTER--M
 |
 +-[MAIN_INNER]

124 Appendix D. Sample Output: Fortran 90

Cleanscape Software FortranLint User’s Manual Version 4.3x

D.5 Freeform Cross Reference

******** SYMBOL TABLE ********

*** Program:

MAIN : defined at line 38 of demo90.f90
 Calls- demo90.f90:M, demo90.f90:M::M_INNER,
 demo90.f90:OUTER, demo90.f90:MAIN::MAIN_INNER

*** Subroutines:

M_INNER : M internal : defined at line 16 of demo90.f90
 Args- (type MYTYPE S, type MYTYPE R)
 Called by- demo90.f90:MAIN
OUTER : defined at line 25 of demo90.f90
 Args- (type MYTYPE S, type MYTYPE R, I*4 RO)
 Calls- demo90.f90:M
 Called by- demo90.f90:MAIN

*** Functions:

INT : I*4 : intrinsic function
 Called by- demo90.f90:MAIN::MAIN_INNER
KIND : I*4 : intrinsic function
 Called by- demo90.f90:MAIN::MAIN_INNER
MAIN_INNER : I*4 : MAIN internal : defined at line 53 of demo90.f90
 Args- (R*4 array R)
 Called by- demo90.f90:MAIN
PRESENT : L*4 : intrinsic function
 Called by- demo90.f90:OUTER
SIZE : I*4 : intrinsic function
 Called by- demo90.f90:MAIN::MAIN_INNER

*** Modules:

M : defined at line 3 of demo90.f90
 Called by- demo90.f90:OUTER, demo90.f90:MAIN

*** Types:

MYTYPE : size = 26 bytes
 NAME : CHAR*10
 in (demo90.f90:M) is Unused
 in (demo90.f90:M::M_INNER) is Ref, Set
 in (demo90.f90:OUTER) is Unused
 SCORES (2,2) : I*4 : KIND= 4
 in (demo90.f90:M) is Unused
 in (demo90.f90:OUTER) is Ref, Set
TYPE_S : size = 26 bytes
 NAME : CHAR*10
 in (demo90.f90:MAIN) is Unused
 SCORES (2,2) : I*4 : KIND= 4
 in (demo90.f90:MAIN) is Ref, Actual arg

*** Records:

STUDENT1 : type TYPE_S : local
 in (demo90.f90:MAIN) is Ref, Set, Actual arg
STUDENT2 : type TYPE_S : local
 in (demo90.f90:MAIN) is Ref, Actual arg
TYPE1 : type MYTYPE : local
 in (demo90.f90:M::M_INNER) is Dummy arg, Set
 in (demo90.f90:OUTER) is Dummy arg, Set
TYPE2 : type MYTYPE : local
 in (demo90.f90:M::M_INNER) is Dummy arg, Ref
 in (demo90.f90:OUTER) is Dummy arg, Ref

 Appendix D. Sample Output: Fortran 90 125

Cleanscape Software FortranLint User’s Manual Version 4.3x

*** Vars/Arrays:

AVE : I*4 : public entity of module M
 in (demo90.f90:M) is Unused
 in (demo90.f90:MAIN) is Set
DUM (:,:) : R*4 : local
 in (demo90.f90:MAIN::MAIN_INNER) is Dummy arg, Ref
I : I*4 : local
 in (demo90.f90:MAIN::MAIN_INNER) is Ref, Set
J : I*4 : local
 in (demo90.f90:MAIN::MAIN_INNER) is Ref, Set
LOC (10) : R*4 : private entity of module M
 in (demo90.f90:M) is Unused
OPDUM : I*4 : local
 in (demo90.f90:OUTER) is Dummy arg, Ref
STR : CHAR*10 : local
 in (demo90.f90:MAIN) is Set
SUM : R*8 : KIND= 8 : local
 in (demo90.f90:MAIN::MAIN_INNER) is Ref, Set, Initialized

*** Parameters:

GRADE (6) : CHAR*2
 in (demo90.f90:MAIN) is Ref

126 Appendix D. Sample Output: FORTRAN 90

Cleanscape Software FortranLint User’s Manual Version 4.3x

D.6 Tabular Cross Reference

******** SYMBOL TABLE ********

*** Functions:

 /---Calls---\ /----------References----------\
Name Class Type Definition Arguments Line-Subprog Subprog File Line

INT intrinsic func I*4 MAIN_INNER demo90.f90 13

KIND intrinsic func I*4 MAIN_INNER demo90.f90 5

M module demo90.f90 line 3 OUTER demo90.f90 27
 MAIN demo90.f90 41

MAIN program demo90.f90 line 38 41-M
 46-M_INNER
 47-OUTER
 49-MAIN_INNER

MAIN_INNER function I*4 demo90.f90 line 53 1:(R*4 array R) MAIN demo90.f90 49
 MAIN internal

M_INNER subroutine demo90.f90 line 16 1:(type MYTYPE S) MAIN demo90.f90 46
 M internal 2:(type MYTYPE R)

OUTER subroutine demo90.f90 line 25 1:(type MYTYPE S) 27-M MAIN demo90.f90 47
 2:(type MYTYPE R)
 3:(I*4 RO)

PRESENT intrinsic func L*4 OUTER demo90.f90 31

SIZE intrinsic func I*4 MAIN_INNER demo90.f90 6
 MAIN_INNER demo90.f90 7

*** Types:

 /---Fields--\
Name Size Field Type Kind Attributes Subprogram File References

MYTYPE 26 NAME CHAR*10 M demo90.f90 5-D
 M::M_INNER demo90.f90 19-S 19-R

 SCORES I*4 (2,2) 4 M demo90.f90 6-D

 Appendix D. Sample Output: FORTRAN 90 127

Cleanscape Software FortranLint User’s Manual Version 4.3x

 OUTER demo90.f90 32-S 32-R 34-S
 34-R

TYPE_S 26 NAME CHAR*10

 SCORES I*4 (2,2) 4 MAIN demo90.f90 49-RA

*** Vars/Arrays:

Name Type Kind Attributes Subprogram File References

AVE I*4 public entity of M demo90.f90 10-D
 module M MAIN demo90.f90 49-S

DUM R*4 (:,:) local MAIN::MAIN_INNER
 demo90.f90 (demo90.inc)3-P (demo90.inc)4-D
 (demo90.inc)6-R (demo90.inc)7-R
 (demo90.inc)9-R

I I*4 local MAIN::MAIN_INNER
 demo90.f90 (demo90.inc)6-RS (demo90.inc)9-R

J I*4 local MAIN::MAIN_INNER
 demo90.f90 (demo90.inc)7-RS (demo90.inc)9-R

LOC R*4 (10) private entity of M demo90.f90 9-D
 module M

OPDUM I*4 local OUTER demo90.f90 25-P 29-D 31-R 32-R

STR CHAR*10 local MAIN demo90.f90 43-D 48-S

STUDENT1 type TYPE_S local MAIN demo90.f90 44-D 46-SA 47-SA 49-RA

STUDENT2 type TYPE_S local MAIN demo90.f90 44-D 46-RA 47-RA

SUM R*8 8 local MAIN::MAIN_INNER
 demo90.f90 (demo90.inc)5-D (demo90.inc)5-I
 (demo90.inc)8-R (demo90.inc)9-S
 (demo90.inc)9-R (demo90.inc)10-R
 (demo90.inc)13-R

TYPE1 type MYTYPE local M::M_INNER demo90.f90 16-P 17-D 19-S
 OUTER demo90.f90 25-P 28-D 32-S 34-S

TYPE2 type MYTYPE local M::M_INNER demo90.f90 16-P 18-D 19-R
 OUTER demo90.f90 25-P 28-D 32-R 34-R

128 Appendix D. Sample Output: FORTRAN 90

Cleanscape Software FortranLint User’s Manual Version 4.3x

*** Parameters:

Name Type Kind Value Subprogram File References

GRADE CHAR*2 (6) MAIN demo90.f90 48-R

 ------------------ LEGEND ------------------

 A - actual argument
 B - used as an assumed array bound
 D - declaration
 E - equivalenced
 F - statement function dummy argument
 G - used as a label in a goto statement
 I - initialized
 i - initialized indirectly
 L - used as a label in an assign statement
 M - allocated
 N - nullified
 O - optional dummy argument
 P - dummy argument
 R - referenced
 S - set
 X - usage cannot be determined
 Z - deallocated

 --

 Appendix E. Sample Output: FORTRAN 77 129

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix E
vv
vv

Sample Output: FORTRAN 77

E.1 Sample FORTRAN 77 Program

C 'PROCDAT'
 PROGRAM PROCDAT
 INTEGER IUNIT, PUNIT
 INCLUDE 'demo.inc'
 DO 100 I = 1, 5
 50 CALL GETUNIT(I+5, IUNIT, PUNIT)

 CALL READNAME(CURITEM.NAME, CURITEM.DIMENSIONS)
 CALL SETTYPE(CURITEM)
 CALL PRINT(CURITEM, IUNIT)

100 CONTINUE
 IF (IUNIT .EQ. 23) GO TO 50
 END
C 'GETUNIT'
 SUBROUTINE GETUNIT(UNIT, UNIT1)
 INTEGER UNIT, UNIT1
 READ (UNIT1,*) UNIT
 END
C 'READNAME'
 SUBROUTINE READNAME(NAME, DIMS)
 CHARACTER*(*) NAME
 INTEGER INUSE, STATUS
 COMMON /BLOCK/ INUSE, STATUS
 REAL*8 DIMS(3)
 READ (5, *) NAME, DIMS
 END
C 'SETTYPE'
 SUBROUTINE SETTYPE(CURITEM)
 INCLUDE 'demo.inc'
 CURITEM.TYPE = CURITEM.DIMENSIONS(2)
 IF (CURITEM.TYPE .GT. 5) CALL PRINT(CURITEM)
 END
C 'PRINT'
 SUBROUTINE PRINT(CURITEM, IUNIT)
 INCLUDE 'demo.inc'
 IF (CURITEM.TYPE .NE. COUNT) CALL PRINTIT(IUNIT, CURITEM)
 END
C 'PRINTIT'
 SUBROUTINE PRINTIT(IUNIT, CURITEM)
 INCLUDE 'demo.inc'
 IF (IUNIT .EQ. INUSE) THEN

 STATUS = 2
 CALL DIPSTAT(4, CURITEM)
 CALL GETUNIT(INUIT, 3)

 END IF
 WRITE (IUNIT,*) CURITEM.TYPE
 END
 C 'DIPSTAT'
 SUBROUTINE DIPSTAT(ISTAT, CURITEM)
 ISTAT = PRINT(CURITEM, 1)
 END

C <<< DEMO.INC >>>

130 Appendix E. Sample Output: FORTRAN 77

Cleanscape Software FortranLint User’s Manual Version 4.3x

 STRUCTURE /ITEM/
CHARACTER*10 NAME
INTEGER TYPE
REAL DIMENSIONS(3)

 END STRUCTURE
 RECORD /ITEM/ CURITEM

 INTEGER INUSE*2, STATUS, COUNT, TIME
 COMMON /BLOCK/ INUSE, STATUS
 COMMON /BK2/ COUNT, TIME

E.2 Analysis Output

Under UNIX:

FortranLint Rev 4.30 6-Mar-97 10:49:55 Page 1
Default options: -w -u -O207,276,76,261 -Ttrim -Xno_unreferenced_parameters
 -Xno_unused_common_variables
Command options: --f -g -s -t -x -Sdemo -7

demo.f

 Program PROCDAT File demo.f Line 2

> 50 CALL GETUNIT(I+5, IUNIT, PUNIT)
> ^
demo.f:PROCDAT line 6:
INTERFACE WARNING #63- expression is changed by subprogram.

> 50 CALL GETUNIT(I+5, IUNIT, PUNIT)
> ^
demo.f:PROCDAT line 6:
INTERFACE ERROR #57- too many arguments.

> CALL READNAME(CURITEM.NAME, CURITEM.DIMENSIONS)
> ^
demo.f:PROCDAT line 7:
INTERFACE ERROR #252- R*4 array passed to dummy arg which is a R*8 array.

> CALL READNAME(CURITEM.NAME, CURITEM.DIMENSIONS)
> ^
demo.f:PROCDAT line 7:
INTERFACE ERROR #287- R*4 array passed to R*8 array of larger size (by 12
bytes).

> IF (IUNIT .EQ. 23) GO TO 50
> ^
demo.f:PROCDAT line 11:
SYNTAX WARNING #47- branch into do loop via label 50.

demo.f:PROCDAT line 6:
USAGE ERROR #126- local variable IUNIT is referenced but never set.

demo.f:PROCDAT line 3:
USAGE FYI #128- local variable PUNIT declared but unused.

 Subroutine READNAME File demo.f Line 19

demo.f:READNAME line 22:
INTERFACE WARNING #185- common block /BLOCK/ length mismatch (compared to
initial use in routine PROCDAT).

 Appendix E. Sample Output: FORTRAN 77 131

Cleanscape Software FortranLint User’s Manual Version 4.3x

demo.f:READNAME line 22:
INTERFACE WARNING #122- common block /BLOCK/ organization differs at member
 INUSE (compared to initial use in routine PROCDAT).

 Subroutine SETTYPE File demo.f Line 27

> IF (CURITEM.TYPE .GT. 5) CALL PRINT(CURITEM)
> ^
demo.f:SETTYPE line 30:
INTERFACE ERROR #56- not enough arguments.

 Subroutine PRINTIT File demo.f Line 38

> CALL DIPSTAT(4, CURITEM)
> ^
demo.f:PRINTIT line 42:
INTERFACE ERROR #59- constant is changed by subprogram.

> CALL DIPSTAT(4, CURITEM)
> ^
demo.f:PRINTIT line 42:
INTERFACE ERROR #248- struct ITEM passed to a R*4 dummy arg.

demo.f:PRINTIT line 43:
USAGE WARNING #127- local variable INUIT is set but never referenced.

 Subroutine DIPSTAT File demo.f Line 48
> ISTAT = PRINT(CURITEM, 1)
> ^
demo.f:DIPSTAT line 49:
INTERFACE ERROR #95- this name is defined as a subroutine.

Global checking:

*** Inconsistent organization of common /BLOCK/, ref/set checking suppressed
for this common block

USAGE ERROR #133- common block members referenced but not set: /BK2/COUNT
USAGE FYI #135- unused common block members: /BK2/TIME

Under VMS:

FortranLint Rev 4.30 6-Mar-97 10:49:55 Page 1

Local options: /WARNINGS /USAGE /SUPPRESS=207,276,76,261 /NOTREE /NOXREF
Command options: /FYI /GLOBAL /STATISTICS /OUTPUT=demo /LANG=f77

DEMO.F;403

 Program PROCDAT File DEMO.F Line 2
> 50 CALL GETUNIT(I+5, IUNIT, PUNIT)
> ^
DEMO.F:PROCDAT line 6:
INTERFACE WARNING #63- expression is changed by subprogram.

> 50 CALL GETUNIT(I+5, IUNIT, PUNIT)
> ^
DEMO.F:PROCDAT line 6:
INTERFACE ERROR #57- too many arguments.

132 Appendix E. Sample Output: FORTRAN 77

Cleanscape Software FortranLint User’s Manual Version 4.3x

> CALL READNAME(CURITEM.NAME, CURITEM.DIMENSIONS)
> ^
DEMO.F:PROCDAT line 7:
INTERFACE ERROR #252- R*4 array passed to dummy arg which is a R*8 array.

> CALL READNAME(CURITEM.NAME, CURITEM.DIMENSIONS)
> ^
DEMO.F:PROCDAT line 7:
INTERFACE ERROR #287- R*4 array passed to R*8 array of larger size (by 12
bytes).

> IF (IUNIT .EQ. 23) GO TO 50
> ^
DEMO.F:PROCDAT line 11:
SYNTAX WARNING #47- branch into do loop via label 50.

DEMO.F:PROCDAT line 6:
USAGE ERROR #126- local variable IUNIT is referenced but never set.

DEMO.F:PROCDAT line 3:
USAGE FYI #128- local variable PUNIT declared but unused.

 Subroutine READNAME File DEMO.F Line 19

DEMO.F:READNAME line 22:
INTERFACE WARNING #185- common block /BLOCK/ length mismatch (compared to
initial
 use in routine PROCDAT).

DEMO.F:READNAME line 22:
INTERFACE WARNING #122- common block /BLOCK/ organization differs at member
INUSE
 (compared to initial use in routine PROCDAT).

 Subroutine SETTYPE File DEMO.F Line 27

> IF (CURITEM.TYPE .GT. 5) CALL PRINT(CURITEM)
> ^
DEMO.F:SETTYPE line 30:
INTERFACE ERROR #56- not enough arguments.

 Subroutine PRINTIT File DEMO.F Line 38

> CALL DIPSTAT(4, CURITEM)
> ^
DEMO.F:PRINTIT line 42:
INTERFACE ERROR #59- constant is changed by subprogram.

> CALL DIPSTAT(4, CURITEM)
> ^
DEMO.F:PRINTIT line 42:
INTERFACE ERROR #248- struct ITEM passed to a R*4 dummy arg.

DEMO.F:PRINTIT line 43:
USAGE WARNING #127- local variable INUIT is set but never referenced.

 Subroutine DIPSTAT File DEMO.F Line 48

> ISTAT = PRINT(CURITEM, 1)
> ^
DEMO.F:DIPSTAT line 49:
INTERFACE ERROR #95- this name is defined as a subroutine.

 Appendix E. Sample Output: FORTRAN 77 133

Cleanscape Software FortranLint User’s Manual Version 4.3x

Global checking:

*** Inconsistent organization of common /BLOCK/, ref/set checking suppressed
for this common block

USAGE ERROR #133- common block members referenced but not set: /BK2/COUNT
USAGE FYI #135- unused common block members: /BK2/TIME

E.3 Statistics Output

>>> Statistics:

 Number of source files: 1

 Source files: 50 lines, 1276 bytes (6% comments, 94% code)
 Include files: 44 lines, 1052 bytes (14% comments, 86% code)
 Total parsed: 94 lines, 2328 bytes (10% comments, 90% code)

 Total subprograms: 7
 Subroutines: 6
 Functions: 0
 Program: 1
 Block Data: 0
 Module: 0

Individual message summary

SYNTAX WARN #47- 1x: branch into do loop via label *.
INTRFC ERR #56- 1x: not enough arguments.
INTRFC ERR #57- 1x: too many arguments.
INTRFC ERR #59- 1x: constant is changed by subprogram.
INTRFC WARN #63- 1x: expression is changed by subprogram.
INTRFC ERR #95- 1x: this name is defined as a subroutine.
INTRFC WARN #122- 1x: common block /*/ organization differs at member *
 (compared to initial use in routine *).
USAGE ERR #126- 1x: local variable * is referenced but never set.
USAGE WARN #127- 1x: local variable * is set but never referenced.
USAGE FYI #128- 1x: local variable * declared but unused.
USAGE ERR #133- 1x: common block members referenced but not set: *, *
USAGE FYI #135- 1x: unused common block members: *, *
INTRFC WARN #185- 1x: common block /*/ length mismatch (compared to initial
 use in routine *).
INTRFC ERR #248- 1x: * passed to a * dummy arg.
INTRFC ERR #252- 1x: * array passed to dummy arg which is a * array.
INTRFC ERR #287- 1x: * array passed to * array of larger size (by * bytes).

Total messages: 16

 Errors Warnings FYIs
 -------- -------- --------
 Syntax: 0 1 0
 Interface: 7 3 0
 Data usage: 2 1 2

 Implicit typing: <supp>

134 Appendix E. Sample Output: FORTRAN 77

Cleanscape Software FortranLint User’s Manual Version 4.3x

E.4 Call Tree

This is a primary tree starting at the program 'PROCDAT'

PROCDAT-+-GETUNIT
 |
 +-READNAME
 |
 +-SETTYPE--PRINT (1)--PRINTIT-+-DIPSTAT--*PRINT*
 | |
 | +-GETUNIT
 |
 +-PRINT see 1

E.5 Freeform Cross Reference

******** SYMBOL TABLE ********

*** Program:

PROCDAT : defined at line 2 of demo.f
 Calls- demo.f:GETUNIT, demo.f:READNAME, demo.f:SETTYPE,
 demo.f:PRINT
 *** Subroutines:

DIPSTAT : defined at line 48 of demo.f
 Args- (I*4 S, R*4 R)
 Calls- demo.f:PRINT
 Called by- demo.f:PRINTIT
GETUNIT : defined at line 14 of demo.f
 Args- (I*4 S, I*4 R)
 Called by- demo.f:PROCDAT, demo.f:PRINTIT
PRINT : defined at line 33 of demo.f
 Args- (struct ITEM R, I*4 R)
 Calls- demo.f:PRINTIT
 Called by- demo.f:PROCDAT, demo.f:SETTYPE, demo.f:DIPSTAT
PRINTIT : defined at line 38 of demo.f
 Args- (I*4 R, struct ITEM R)
 Calls- demo.f:DIPSTAT, demo.f:GETUNIT
 Called by- demo.f:PRINT
READNAME : defined at line 19 of demo.f
 Args- (CHAR*(*) S, R*8 array S)
 Called by- demo.f:PROCDAT
SETTYPE : defined at line 27 of demo.f
 Args- (struct ITEM RS)
 Calls- demo.f:PRINT
 Called by- demo.f:PROCDAT

*** Common blocks:

BK2 : size = 8 bytes : Members- COUNT, TIME
 Defined in- demo.f:PROCDAT, demo.f:SETTYPE, demo.f:PRINT,
 demo.f:PRINTIT
BLOCK : size = 6 bytes : Members- INUSE, STATUS
 Defined in- demo.f:PROCDAT, demo.f:READNAME,
 demo.f:SETTYPE, demo.f:PRINT, demo.f:PRINTIT

 Appendix E. Sample Output: FORTRAN 77 135

Cleanscape Software FortranLint User’s Manual Version 4.3x

*** Structures:

ITEM : size = 26 bytes
 NAME : CHAR*10
 in (demo.f:PROCDAT) is Set, Actual arg
 in (demo.f:SETTYPE) is Unused
 in (demo.f:PRINT) is Unused
 in (demo.f:PRINTIT) is Unused
 TYPE : I*4
 in (demo.f:PROCDAT) is Unused
 in (demo.f:SETTYPE) is Ref, Set
 in (demo.f:PRINT) is Ref
 in (demo.f:PRINTIT) is Ref
 DIMENSIONS (3) : R*4
 in (demo.f:PROCDAT) is Set, Actual arg
 in (demo.f:SETTYPE) is Ref
 in (demo.f:PRINT) is Unused
 in (demo.f:PRINTIT) is Unused

*** Records:

CURITEM : struct ITEM : local
 in (demo.f:PROCDAT) is Ref, Set, Actual arg
 in (demo.f:SETTYPE) is Dummy arg, Ref, Set, Actual arg
 in (demo.f:PRINT) is Dummy arg, Ref, Actual arg
 in (demo.f:PRINTIT) is Dummy arg, Ref, Actual arg

*** Vars/Arrays:

COUNT : I*4 : bytes 0-3 of common /BK2/
 in (demo.f:PRINT) is Ref
CURITEM : R*4 : local
 in (demo.f:DIPSTAT) is Dummy arg, Indeterminate, Actual arg
DIMS (3) : R*8 : local
 in (demo.f:READNAME) is Dummy arg, Set
I : I*4 : local
 in (demo.f:PROCDAT) is Ref, Set
INUIT : I*4 : local
 in (demo.f:PRINTIT) is Set, Actual argINUSE : I*2 : bytes 0-1 of
common /BLOCK/
 in (demo.f:PRINTIT) is Ref
ISTAT : I*4 : local
 in (demo.f:DIPSTAT) is Dummy arg, Set
IUNIT : I*4 : local
 in (demo.f:PROCDAT) is Ref, Actual arg
 in (demo.f:PRINT) is Dummy arg, Ref, Actual arg
 in (demo.f:PRINTIT) is Dummy arg, Ref
NAME : CHAR*(*) : local
 in (demo.f:READNAME) is Dummy arg, Set
PUNIT : I*4 : local
 in (demo.f:PROCDAT) is Unused
STATUS : I*4 : bytes 2-5 of common /BLOCK/
 in (demo.f:PRINTIT) is Set
UNIT : I*4 : local
 in (demo.f:GETUNIT) is Dummy arg, Set
UNIT1 : I*4 : local
 in (demo.f:GETUNIT) is Dummy arg, Ref

136 Appendix E. Sample Output: FORTRAN 77

Cleanscape Software FortranLint User’s Manual Version 4.3x

E.6 Tabular Cross Reference

******** SYMBOL TABLE ********

*** Subroutines:
 /---Calls---\ /----------References----------\
Name Class Type Definition Arguments Line-Subprog Subprog File Line

DIPSTAT subroutine demo.f line 48 1:(I*4 S) 49-PRINT PRINTIT demo.f 42
 2:(R*4 R)

GETUNIT subroutine demo.f line 14 1:(I*4 S) PROCDAT demo.f 6
 2:(I*4 R) PRINTIT demo.f 43

PRINT subroutine demo.f line 33 1:(struct ITEM R) 35-PRINTIT PROCDAT demo.f 9
 2:(I*4 R) SETTYPE demo.f 30
 DIPSTAT demo.f 49

PRINTIT subroutine demo.f line 38 1:(I*4 R) 42-DIPSTAT PRINT demo.f 35
 2:(struct ITEM R) 43-GETUNIT

PROCDAT program demo.f line 2 6-GETUNIT
 7-READNAME
 8-SETTYPE
 9-PRINT

READNAME subroutine demo.f line 19 1:(CHAR*(*) S) PROCDAT demo.f 7
 2:(R*8 array S)

SETTYPE subroutine demo.f line 27 1:(struct ITEM RS) 30-PRINT PROCDAT demo.f 8

*** Common blocks:

Name Size Members Consistency References

BK2 8 COUNT TIME model PROCDAT
 same SETTYPE PRINT PRINTIT

BLOCK 6 INUSE STATUS model PROCDAT
 same READNAME SETTYPE PRINT PRINTIT

 Appendix E. Sample Output: FORTRAN 77 137

Cleanscape Software FortranLint User’s Manual Version 4.3x

*** Structures:
 /---Fields--\
Name Size Field Type Kind Attributes Subprogram File References

ITEM 26 NAME CHAR*10 PROCDAT demo.f (demo.inc)3-D 7-SA
 SETTYPE demo.f (demo.inc)3-D
 PRINT demo.f (demo.inc)3-D
 PRINTIT demo.f (demo.inc)3-D

 TYPE I*4 PROCDAT demo.f (demo.inc)4-D
 SETTYPE demo.f (demo.inc)4-D 29-S 30-R
 PRINT demo.f (demo.inc)4-D 35-R
 PRINTIT demo.f (demo.inc)4-D 45-R

 DIMENSIONS R*4 (3) PROCDAT demo.f (demo.inc)5-D 7-SA
 SETTYPE demo.f (demo.inc)5-D 29-R
 PRINT demo.f (demo.inc)5-D
 PRINTIT demo.f (demo.inc)5-D

*** Vars/Arrays:

Name Type Kind Attributes Subprogram File References

COUNT I*4 bytes 0-3 of PRINT demo.f (demo.inc)9-D (demo.inc)11-D 35-R
 common /BK2/

CURITEM struct ITEM local PROCDAT demo.f (demo.inc)7-D 7-SA 7-SA 8-RSA
 9-RA
 SETTYPE demo.f 27-P (demo.inc)7-D 29-S
 29-R 30-R 30-RA
 PRINT demo.f 33-P (demo.inc)7-D 35-R
 35-RA
 PRINTIT demo.f 38-P (demo.inc)7-D 42-RA
 45-R

CURITEM R*4 local DIPSTAT demo.f 48-P 49-XA

DIMS R*8 (3) local READNAME demo.f 19-P 23-D 24-S

I I*4 local PROCDAT demo.f 5-RS 6-R

INUIT I*4 local PRINTIT demo.f 43-SA

INUSE I*2 bytes 0-1 of PRINTIT demo.f (demo.inc)9-D (demo.inc)10-D 40-R
 common /BLOCK/

ISTAT I*4 local DIPSTAT demo.f 48-P 49-S

138 Appendix E. Sample Output: FORTRAN 77

Cleanscape Software FortranLint User’s Manual Version 4.3x

IUNIT I*4 local PROCDAT demo.f 3-D 6-RA 9-RA 11-R
 PRINT demo.f 33-P 35-RA
 PRINTIT demo.f 38-P 40-R 45-R

NAME CHAR*(*) local READNAME demo.f 19-P 20-D 24-S

PUNIT I*4 local PROCDAT demo.f 3-D

STATUS I*4 bytes 2-5 of PRINTIT demo.f (demo.inc)9-D (demo.inc)10-D 41-S
 common /BLOCK/

UNIT I*4 local GETUNIT demo.f 14-P 15-D 16-S

UNIT1 I*4 local GETUNIT demo.f 14-P 15-D 16-R

 ------------------ LEGEND ------------------

 A - actual argument
 B - used as an assumed array bound
 D - declaration
 E - equivalenced
 F - statement function dummy argument
 G - used as a label in a goto statement
 I - initialized
 i - initialized indirectly
 L - used as a label in an assign statement
 M - allocated
 N - nullified
 O - optional dummy argument
 P - dummy argument
 R - referenced
 S - set
 X - usage cannot be determined
 Z - deallocated

 --

 Appendix F. Diagnostic Messages 139

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix F
vv
vv

Diagnostic Messages

F.1 Format

FortranLint 's diagnostic messages are defined in a text file named flint.err. This
file contains one message per line in the following format:

XX Text

where ### is a three-digit message number
XX is a two-letter diagnostic code
Text is the message text

Example:

 157 SE no matching "(".

If the message number is less than three digits long, it is right-justified in a three-
column field.

The first letter of the diagnostic code specifies a basic error category as follows:

 Letter Type of problem

 S Syntax
 U Data usage
 I Call interface
 P Portability
 M Implicit typing
 O Overflow (limit exceeded)

The second letter of the diagnostic code specifies a severity level as follows:

 Letter Type of problem

 E Error
 W Warning
 F Hint (FYI)

Lines that start with an "I" are not diagnostic messages. These lines contain
information used during portability checking.

NOTE: Modification of the flint.err file is not recommended.

140 Appendix F. Diagnostic Messages

Cleanscape Software FortranLint User’s Manual Version 4.3x

 Appendix G. Performance 141

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix G
vv
vv

Performance

G.1 Disk Space

G.1.1 Program Size

On most systems, FortranLint requires 1 MB to 4 MB of disk space for the package
itself. Additional space is required during analysis (see below).

G.1.2 Temporary Files

FortranLint generates temporary files during processing. These files are auto-
matically deleted upon program termination, including aborts.

Under UNIX, the library function tempnam() is used to obtain names for the
temporary files. On most systems, the environment variable TMPDIR may be
used to control the directory used by tempnam(); if TMPDIR is not set,
tempnam() normally uses /usr/tmp or /tmp. For additional information, see
the UNIX “man” page for tempnam().

Under VMS, temporary files are placed in the directory specified by
SYS$SCRATCH.

Generally speaking, temporary files will require 2 MB (or more) of disk space for
every 10,000 lines of source code. Cross-reference tables and call trees will increase
the amount of disk space required.

142 Appendix G. Performance

Cleanscape Software FortranLint User’s Manual Version 4.3x

 Appendix H. Xlint Installation Under UNIX 143

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix H
vv
vv

Xlint Installation Under UNIX

H.1 Pre-installation

The Xlint installation procedure assumes that FortranLint has already been installed
and activated. If FortranLint has not been installed, see the instructions in Appendix
A.

Note: The FortranLint / Xlint “installation directory” mentioned in the following
sections is the directory that contains the FortranLint / Xlint support files (for
example, flint.err and flint.cfg).

H.2 Installation Procedure

1. Log in as system manager.

2. Go to the FortranLint / Xlint installation directory. The following Xlint

support files should already be present:

xlint # Xlint executable
XLint # Xlint resource file
demo.fdb # demo database generated from demo.f

3. Modify the user configuration for each Xlint user as follows:

(a) Set the environment variable XLINTHOST to the host name of
the system where the Xlint license manager will be running. (To
obtain the host name, execute the UNIX command hostname on
the server.)

(b) Set the environment variable XLINTPATH to a full path for

the directory which contains the user's own FORTRAN source
files.

(c) Set the environment variable XLINTHOME to a full path for

the Xlint installation directory.

144 Appendix H. Xlint Installation Under UNIX

Cleanscape Software FortranLint User’s Manual Version 4.3x

For example, if the user is using csh, use commands of the form:

setenv XLINTHOST nodename
setenv XLINTPATH source_path
setenv XLINTHOME installation_directory

If the user is using sh, use commands of the form:

XLINTHOST=nodename; export XLINTHOST
XLINTPATH=source_path; export XLINTPATH
XLINTHOME=installation_directory; export XLINTHOME

Note: There should no white space on either side of the “equals” sign.

For other shells, substitute the appropriate commands.

4. Add $XLINTHOME to the user's search path. This step can be omitted if

$FLINTHOME points to the same directory as $XLINTHOME and
$FLINTHOME has been already been added to the search path.

For csh users, use the command:

set path=($path $XLINTHOME)

For sh users, use the command:

PATH=$XLINTHOME:$PATH

To make the changes permanent, add the new command to the
appropriate login scripts. For example, for csh users, modify “.cshrc”.

5. Optional: The Xlint package includes a utility program flpatch that can be

used to patch the Xlint installation directory and server name directly into
the xlint executable.

To patch the executable, use commands of the form:

flpatch xlint home directory
flpatch xlint host hostname

Replace directory with the Xlint installation directory, and hostname with the
host name for the system that will be running the Xlint license manager.

Note: The install_flint shell script runs flpatch automatically. flpatch
therefore should be needed only if one of these parameters changes.

 Appendix H. Xlint Installation Under UNIX 145

Cleanscape Software FortranLint User’s Manual Version 4.3x

6. Copy the XLint resource file (XLint) to the appropriate directory or
directories.

A copy of this file should be placed in the home directory for each Xlint
user. By default, Xlint uses this copy. Users may specify alternate versions
on the Xlint command line; for additional information, see section 15.3.

Alternatively, users may set the standard environment variable XAPPL-
RESDIR or use the standard app-defaults directory. For additional infor-
mation, see the operating system vendor’s “X” documentation.

7. Users are now ready to activate Xlint.

H.3 Activation Procedure

Every Xlint license must be assigned a unique authorization number (activation
key) before the package will run.

1. To proceed, execute the following command:

xlint activate

The software will provide users with a server code, and it will prompt
them to call Cleanscape for activation. Cleanscape will use the server code
to generate a unique authorization number for the software.

2. After an activation key is obtained, execute the command:

xlint activate

again, and enter the activation key when prompted.

3. If the license manager process iptlmd has not already been started, users

will need to execute the command:

startup

from the installation directory. Note that a single iptlmd process will allow
both FortranLint and Xlint to run.

Users will need to run startup every time they reboot the system or kill the
license manager. To avoid this step, add the startup command to the
appropriate system boot script.

146 Appendix H. Xlint Installation Under UNIX

Cleanscape Software FortranLint User’s Manual Version 4.3x

4. The license manager daemon requires a three minute period after being
started for initialization. When the three minutes are up, execute the
command:

xlint

Xlint is now ready for use.

Note: For license manager options, see Appendix C.

 Appendix I. Xlint Installation Under VMS 147

Cleanscape Software FortranLint User’s Manual Version 4.3x

Appendix I
vv
vv

Xlint Installation Under VMS

I.1 Pre-installation

The Xlint installation procedure assumes that FortranLint has already been installed
and activated. If FortranLint has not been installed, see the instructions in Appendix
B.

Note: The FortranLint / Xlint “installation directory” mentioned in the following
sections is the directory that contains the FortranLint / Xlint support files (for
example, flint.err and flint.cfg).

I.2 Installation Procedure

1. Log in as system manager.

2. Go to the FortranLint / Xlint installation directory. The following Xlint

support files should already be present:

XLINT.EXE ! Xlint executable file
XLINT.DAT ! Xlint resource file
DEMO.FDB ! demo database file for demo.for

3. Modify the user configuration for each Xlint user as follows:

(a) If the Xlint license manager is installed on a DECNET server, set
the logical XLINTHOST to the node name for the server.
Otherwise, set XLINTHOST to “NO_DECNET”.

Note: To obtain the node name, execute the command “show
logical SYS$NODE” on the server. Discard any “colon”
characters.

(b) Set the logical XLINTPATH to a full path for the directory which

contains the user's own FORTRAN source files.

148 Appendix I. Xlint Installation Under VMS

Cleanscape Software FortranLint User’s Manual Version 4.3x

(c) Set the logical XLINTHOME to a full path for the Xlint
installation directory.

(d) Set the logical XLINT to a full pathname for the executable file

XLINT.EXE in the installation directory.

Add the new commands to the appropriate login.com files.

Example:

define XLINTHOST “nodename”
define XLINTPATH [source_path]
define XLINTHOME [installation_directory]
XLINT :== $XLINTHOME:XLINT.EXE

4. Optional: The FortranLint package includes a utility program named

FLPATCH.EXE that can be used to patch the Xlint installation directory
and server node name directly into the Xlint executable file.

To patch Xlint, use commands of the form:

FLPATCH XLINT.EXE HOME disk:[directory_path]
FLPATCH XLINT.EXE HOST nodename

disk:[directory_path] should specify the Xlint installation directory. nodename
should be the appropriate node name (or “NO_DECNET”), as explained
in step 3.

 Appendix I. Xlint Installation Under VMS 149

Cleanscape Software FortranLint User’s Manual Version 4.3x

5. Copy the resource file (XLINT.DAT) to the appropriate directory or
directories.

Two logicals are used:

DECW$SYSTEM_DEFAULT -- System directory (same for all users)
DECW$USER_ DEFAULTS -- Per-user directory

To install a copy of XLINT.DAT for system-wide use, place it in the
directory specified by DECW$SYSTEM_DEFAULTS. To install a copy
of XLINT.DAT for use by an individual user, place it in the directory
specified by DECW$USER_DEFAULTS for that user.

Note that users may an alternate resource file on the Xlint command line;
for additional information, see section 15.3.

6. Users are now ready to activate Xlint.

I.3 Activation Procedure

Every Xlint license must be assigned a unique authorization number (activation
key) before the package will run.

1. To proceed, execute the following command:

FLINT /LICENSE=ACTIVATE

The software will provide users with a server code, and it will prompt
them to call Cleanscape for activation. Cleanscape will then use this
information to provide them with a unique authorization number needed
to run the software.

2. After an activation key is obtained, execute the command:

FLINT /LICENSE=ACTIVATE

again, and enter the activation code when prompted.

3. If the license manager (iptlmd) hasn't already been started, users will need

to execute the command:

@FLINTHOME:STARTUP.COM

150 Appendix I. Xlint Installation Under VMS

Cleanscape Software FortranLint User’s Manual Version 4.3x

This will start the license daemon. Note that a single iptlmd process will
allow both FortranLint and Xlint to run.

Users will need to run @FLINTHOME:STARTUP again if they reboot
the system or kill the detached process. Alternatively, simply add the
STARTUP command to the appropriate system startup script.

4. The detached process requires a three minute period after being started for

initialization. When the three minutes are up, execute the command:

XLINT

Xlint is now ready for use.

Note: For license manager options, see Appendix C.

