USER'SMANUAL

Cleanscape FortranLint?

SOURCE CODE ANALYZER

Verson 7.x

Cleanscape Softwar e | nter national

Sales and Service Office
PO Box 616
Franklin Springs, GA 30639
Toll-free 800-944-LINT
Direct 706-245-1070
Fax 706-432-1720
E-mail support@cl eanscape.net

mailto:support@cleanscape.net

Cleanscape FortranLint 4 USER'SMANUAL
A SOURCE LEVEL CODE ANALYZER

For FORTRAN PROGRAMMING
On Unix, Linux, Windows, Mac, FreeBSD, and VMS Systems
Version 7.x
Note: Licensed users may photocopy for distribution.

Direct comments concerning this manual to the address on the title page or
support@cleanscape.net

Copyright 1987-2020

CLEANSCAPE
NOTICE OF COPYRIGHTS

Copyrighted by Cleanscape as an unpublished work. All rightsreserved. In claiming any copyright
protection which may be applicable, Cleanscape reserves and does not waive any other rights that it may
have (by agreement, statutory or common law, or otherwise) with respect to this material. See Notice of
Proprietary Rights.

NOTICE OF PROPRIETARY RIGHTS

This manual and the material on which it is recorded are the property of Cleanscape. Its use, reproduction,
transfer and/or disclosure to others, in this or any other form, is prohibited except as permitted by a written
License Agreement with Cleanscape. Cleanscape reserves the right to update this document without prior
notification.

FortranLint is aregistered trademark of Cleanscape Software International.

Xlint isatrademark of Cleanscape Software International.

All other product names mentioned in this document are registered trademarks or trademarks of their
respective holders.

mailto:support@cleanscape.net

Table of Contents

Table of Contents

1 Introduction 5
1.1 Overview 5

1.2 Fortran 2003/2008 support 6

1.3 Document Scope 7

1.4 Documentation Style 8

2 Getting Started 9
2.1 Installation 9

2.2 Analyzing Programs 9

2.3 Managing the Output 10
2.3.1 Severity Levels 10

2.3.2 Redirection 10

2.3.3 Statistics Output 11

2.3.4 Summary Mode 11

2.4 Call Trees and Cross Reference Tables 11

3 Command Reference 13
3.1 Command-Line Options 13
3.1.2 Command Format 13

3.1.2 Option Format 13

3.1.3 List of Options 15

3.1.4 Using UNIX SwitchesUnder VM S 30

3.2 Summary of Options 31
3.2.1 UNIX/Windows Option Summary 31
3.2.2VMS Option Summary 32

3.3 Configuration Files 33

3.4 Environment Variables/ Logicals 34

4 Sour ce Conventions 37
4.1 Source Format 37
4.1.1 “Debug” Lines 38

4.2 Include Files 38

4.3 'C’ preprocessor (UNIX/Windows only) 38

4.4 CDD and DBMS Processing (VMS Only) 39
4.4.1 CDD (Common Data Dictionary) Declarations 39

4.4.2 DBMS Support (FDML Statements) 39

4.4.3 CDD/DBMS Requirements 39

4.5 FORTRAN 77 Extensions 39

4.6 Fortran 90/95 Extensions 41

4.7 Specifying FORTRAN Dialect 41

4.8 Default Sizes 41

4.9 High Performance Fortran (HPF) 42

5 Controlling Analysis 43
5.1 Setting the Scope 43

5.2 Message Classification 43

5.3 Selecting Analysis Level 44

5.4 Suppressing Individual Messages 45

5.5 Portability Checking 46

5.6 Local Data Flow Analysis 46

Cleanscape Software FortranLint User’'s Manual Version 7.x

1l Table of Contents

6 Analysis Output 47
6.1 Overview 47
6.2 Summary Mode 48
6.3 Output Details 48

6.3.1 Options and Filenames 48
6.3.2 Source Listing 49
6.3.3 Diagnostic Messages 49
6.4 Statistics Output 49
6.5 Exit Status 51

7 Call Trees 53
7.1 Overview 53
7.2 Tree Options 53

7.2.1 Arguments 54
7.3 Call Tree Format 55
7.3.1 Trimmed Trees 55
7.3.2 Condensing Multiple Calls 56
7.3.3 Sorting Alphabetically 57
7.3.4 Squished Trees 57
7.3.5 Graphic Character Set 58
7.4 Call Tree Content 59
7.4.1 Top Node 59
7.4.2 Undefined Routines 59
7.4.3 Library Routines 60
7.5 Recursion 60
7.6 Dummy Routines 60
7.7 Entry Points 60
7.8 Fortran 90 Internal Subprograms 60

8 Cross Reference 61
8.1 Overview 61
8.2 Layout 62

8.2.1 Program Routines 62
8.2.2 Block Data Routines 63
8.2.3 Subroutines and Functions 63
8.2.4 Modules (F90 only) 64
8.2.5 Common Blocks 64
8.2.6 Structures and Structure Components 64
8.2.7 Variables, Arrays, and Records 64
8.2.8 Parameters 66
8.2.9 Equivalences 66
8.2.10 High Performance Fortran (HPF) 66
8.3 Format Selection 67
8.4 Content Selection 68

9 Library Support 73
9.1 Overview 73
9.2 Writing Library Shell Files 74

76

9.4 Library Precedence 77
9.5 Miscellaneous Library Issues 77
9.5.1 Interaction with Cross Reference and Call Trees 77
9.5.2 File Format 77

Cleanscape Software FortranLint User's Manual Version 7.x

Table of Contents 1]

10 Database Files 79
101 Overview 79
10.2 Creating Database Files 79
10.3 Using Database Files 80
104 Using FDB files as libraries. 80

11 Xlint Introduction 81

12 L earning About Xlint 83
12.1 Screen Layout 83
12.2 FileMenu 85
12.3 Search Menu 85
12.4 Build Menu 86
12.5 Source Window 86
12.6 Lint Window 87
12.7 Tree Window 88
12.8 Cross Reference Window 88
12.9 Control Panel 89
12.10 Mouse Functions 20

13 Database Files and Xlint 91
13.1 Overview 91
13.2 Loading Database Files 91
13.3 Rebuilding Database Files under Xlint 92

14 Xlint: Getting Started 93
14.1 Configuration Setup 93
14.2 Running Xlint 93
14.3 Sample Sessions 94

15 More About Xlint 97
15.1 Resizing Windows 97
15.2 Window Interaction 97
15.3 Command-Line Options 97
15.4 Advanced Example 98

16 Xlint Resour ce Files 101
16.1 Overview 101
16.2 Xlint and XLINT.DAT 101

Appendix A Installation Windows, Unix/Linux 105
A.0 Windows Installation — GUI only 105
A.1 Installation Procedure, Unix/Linux GUI 107
A.2 Installation Procedure, Unix/Linux Command Line 107
A.3 Activation Procedure, Unix/Linux 110
A.4 Patching FortranLint (Unix/Linux only) 111

Appendix B Installation Under VM S 113
B.1 Pre-installation 113
B.2 Installation Procedure 113
B.3 Activation Procedure 115
B.4 Patching FortranLint 116

Cleanscape Software FortranLint User’'s Manual Version 7.x

v Table of Contents

C.1.4 dmaert

D.2 Analysis Output

D.3 Statistics Output

D.4 Cdl Tree

E.2 Analysis Output

E.3 Statistics Output

E.4 Cdl Tree

F.1 Format

Appendix G Performance

G.1 Disk Space

G.1.1 Program Size

H.1 Pre-installation

H.2 Installation Procedure

H.3 Activation Procedure

.1 Pre-installation

|.2 Installation Procedure

[.3 Activation Procedure

Appendix C License Manager, Unix/Linux/VM S 119
C.1 License Manager Commands 119
C.1.1 User Commands 119

C.1.2 Administrative Commands 120

C.1.3 License Manager Options (at daemon startup only) 121

122

Appendix D Sample Output: Fortran 90 123
D.1 Sample Fortran 90 Program 123

124

127

127

D.5 Freeform Cross Reference 128

D.6 Tabular Cross Reference 130
Appendix E Sample Output: FORTRAN 77 133
E.1 Sample FORTRAN 77 Program 133

134

137

138

E.5 Freeform Cross Reference 138

E.6 Tabular Cross Reference 140
Appendix F Diagnostic M essages 143
143

F.1 Modifying theflint.err file 144
145

145

145

G.1.2 Temporary Files 145
Appendix H Xlint Installation, Unix/Linux 147
147

147

149

Appendix | Xlint Installation Under VM S 151
151

151

153

Version 7.x

Cleanscape Software FortranLint User's Manual

1. Introduction 5

1

Introduction

1.1 Overview

FortranLint is a programming tool that simplifies the debugging and maintenance of
FORTRAN 77, Fortran 90, Fortran 95, and Fortran 2003/2008 programs.

FortranLint includes a source code analyzer that can detect a wide range of potential
problems, including:

Inappropriate arguments passed to functions

Inconsistencies in common block declarations

Non-portable code

Type usage conflicts across different subprograms/program units
Unused functions, subroutines, and variables

Variables that are referenced but not set

FortranLint can be used to:

Check source files before they are compiled
Isolate obscure problems

Identify problems before debugging is required
Map out unfamiliar programs

Enforce programming standards

The diagnostic messages produced by FortranLint are more detailed than those
produced by standard compilers, and cover a wider range of problems. FortranLint
analyzes source files both individually and as a group, and can therefore identify
problems that are beyond the scope of a compiler.

As of version 7, there are 871 unique messages that can diagnose 1519 situations in
Fortran code.

Cleanscape Software FortranLint User’'s Manual Version 7.x

6 1. Introduction

1.2 Fortran 2003/2008 support

Fortran-lint support maps well to compiler capability, non-object-oriented. New
changes in v7 are in bold.

Language Additions
- BLOCK construct (F08)
VALUE statement and attribute
VOLATILE statement and attribute
BIND statement and attribute
Pointer objects can now have the INTENT attribute
Symbol names up to 63 characters
Statements up to 256 lines (16,000 character limit for Flint)
Square brackets [] are permitted to delimit array constructors in addition to
previous standard / /
Binary, Octal, and Hex (BOZ) constants to intrinsic functions INT, REAL, DBLE,
and CMPLX

Intrinsics
ISO_C_BINDING
ISO_FORTRAN_ENV
IEEE_ARITHMETIC
IEEE_EXCEPTIONS
IEEE_FEATURES
Language binding can be specified in FUNCTION, SUBROUTINE, and ENTRY
statements
INTRINSIC and NON-INTRINSIC can be specified for modules in USE
statements GET_COMMAND, GET_COMMAND_ARGUMENT,

COMMAND_ARGUMENT_COUNT, and
GET_ENVIRONMENT_VARIABLE intrinsics

F08 COMPILER_OPTIONS and COMPILER_VERSION intrinsic functions
Updated MAXLOC and MINLOC to the F03 standard

Updated WHERE construct to the F03 standard

Character arrays may now be supplied to

- MAXLOC, MINLOC

- MAXVAL, MINVAL

KIND= argument may be applied to

- ACHAR, IACHAR, ICHAR

- LEN, LEN_TRIM

- MAXLOC, MINLOC

1/0
FLUSH statement
WAIT statement (with ASYNCHRONOUS/ASYNCH and DONE extensions
from IBM)
ASYNCHRONOUS statement and attribute

Cleanscape Software FortranLint User's Manual Version 7.x

1. Introduction 7

The following 170 specifiers have been added or updated to the FO3 standard:
ACCESS, ASYNCHRONOUS (along with ASYNCH alias, an IBM extension),
BLANK, DECIMAL, DELIM, ENCODING, ID, IOMSG, PAD, PENDING,
POS, RECORDTYPE (DEC, HP, Intel extension) ROUND, SIGN, SIZE, and
STREAM

FO08 1/0 specifier NEWUNIT

Any KIND is permissible with integer specifiers (SIZE, NEXTREC, etc.)
Intrinsic functions IS_IOSTAT _END, IS_IOSTAT_EOR

Comma after a P-edit descriptor is optional when followed by a repeat
NEW_LINE intrinsic function

SELECTED CHAR_KIND intrinsic function

FO08 extension to SELECTED_REAL_KIND intrinsic function

Other Additions/Improvements

- Complete MPI interface definition using stubs for thorough interface
analysis and variable tracking (see section 9.2 for stub information)
Complete NetCDF interface definition (F77 format)
A new command line switch - o "nmessage_f or mat " (use single quotes on *nix)

to change the format of Flint’s analysis messages, suitable for interfacing to IDE/
editor such as Visual Studio

New analyses

Improved pointer handling

New xref legend item, ‘C’ for “assoCiated”
Extensive bug fixes

Various operational enhancements

User Interface Changes to Note

Separator for cross reference (xref) content selection is now ‘. instead of *_’; see
Section 8.4. Prior versions of Flint retain the old syntax.

1.3 Document Scope

This is the command line reference manual that gives full descriptions of all commands
available in FortranLint. All users, no matter what user interface mode they use,
should reference this document for full descriptions of each command.

Chapters 11-16 also describe the use of Xlint, an adjunct graphical source browser
available on Unix and Linux only.

The FortranLint GUI (an executable called flintgui), available for Unix, Linux, Mac,
and Windows, is a front-end to the command-line FortranLint product. The command
line option used to fulfill a GUI operation is detailed in the GUI’s online help
reference.

For installation and usage of the Flint GUI, consult the flintguide.pdf file located in the
‘doc’ subdirectory.

Cleanscape Software FortranLint User’'s Manual Version 7.x

8 1. Introduction

1.4 Documentation Style

Command descriptions for Unix, Linux, Mac, FreeBSD, and Windows are all the same
(except where noted) and may be prefaced with the shorthand description, “UNIX”.
Command descriptions for VMS are explicitly referenced with the text, “under VMS”.

Flint with capital ‘F’ may sometimes be used as a shorthand reference to FortranL.int.
flint in all small letters is the instruction to use at the command line.

Commands are in Arial (or Helvetica) typeface.
FortranLint output is in Cour i er Newtypeface.

“Flint” (like the city in Michigan or our favorite movie, In Like Flint) is a shorthand
notation for FortranLint and may be used in this document.

Cleanscape Software FortranLint User's Manual Version 7.x

2. Getting Started 9

2

Getting Started

2.1 Installation

Using FortranLint is subject to the terms and conditions contained in
shrinkwrap_license.pdf, located in the ‘doc’ subdirectory. If you do not

agree to the terms of that agreement, discontinue use of the associated
software product immediately and contact sales@cleanscape.net within
15 days of purchase to arrange for return.

For installation instructions, see Appendix A, Appendix B (VMS only), or the
separate FortranLint Quick Start Guide (flintguide.pdf in the ‘doc’ subdirectory).

2.2 Analyzing Programs

To run FortranLint, use a command of the form:
flint -options filel.f file2.f file3.f
or
flint /options filel.for file2.for file3.for under VMS

where options may be one or more options, and each of the specified files is a
FORTRAN source file containing any number of FORTRAN program units.
Options may be intermixed with or appear after file names.

If FortranLint is invoked without any options or parameters, a “help” screen will
be displayed:
flint

If source files are specified, but no options are given, FortranLint will perform a
basic analysis of the source files and output the results to the console.

For example, to analyze a single source file, use a command of the form:
flint demo.f
or

flint demo.for under VMS

The following commands will perform a more detailed analysis:
flint -fgs demo.f
or
flint /FYI /GLOBAL /STATISTICS demao.for under VMS

Cleanscape Software FortranLint User’'s Manual Version 7.x

mailto:sales@cleanscape.net

10 2. Getting Started

2.3 Managing the Output

When FortranLint is used on a large program for the first time, it may report
hundreds or thousands of inconsistencies. FortranLint has several features that
simplify management of the output.

In addition, look to our website for supplemental information on using Flint.

Topics include:

- Specifying the correct sourcefile list for large projects or 3" party code

- Iterative analysis approach for first time analysis of large projects

- Specify only the necessary subset of files for analyzing one (or a few) sourcefiles

- Memory leak detection

- Using supplied .Ish files for thorough interface analysis when using IEEE
modules, MPI, or NetCDF

2.3.1 Severity Levels

If you find the number of messages too unwieldy to start with, first run with just
errors being reported. Add - - w (“minus minus w”) to your command line, which
disables warnings (warnings are enabled by default in file

$FLI NTHOVE/ f 1 i nt . cf g).

Make sure you have not enabled any of the other Diagnostic options as listed on
the Flint help screen. Then, after you have dealt with errors-only, remove - - w
from your command line to reenable warnings, deal with those messages, and only
then add other diagnostics, one at a time.

2.3.2 Redirection

The command-line option “-Sname” or “/SPLIT=name” (under VMS) will cause
FortranLint to redirect output from the console to the following files:

Analysis output name.Int
Statistics (-S) name.stt
Call tree (-t) name.tre
Cross-reference (-x) name.xrf
Under VMS:
Analysis output name.Int
Statistics (/STATISTICS) name.stt
Call tree (/TREE) name.tre

Cross-reference (/XREF) name.xrf

For example, the following commands will analyze demo.f (or demao.for), send
analysis output to demo.Int, and send statistics output to demo.stt:

flint -fgs demo.f -Sdemo

or
flint /FYI /GLOBAL /STAT demo.for /SPLIT=demo under VMS

Cleanscape Software FortranLint User's Manual Version 7.x

2. Getting Started 11

2.3.3 Statistics Output

The command-line option “-s” or /STATISTICS (under VMS) enables statistics
and related output.

If this option is used, FLINT displays a screen after analysis is completed which
includes 1/0 statistics, structural statistics (subroutine counts, etc.) and a list of the
error messages, ordered by frequency of occurrence.

2.3.4 Summary Mode

The command-line option “-+” or /SUMMARY (under VMS) combines three
operations:

(a) This option displays a progress meter that tracks the progress of
FortranLint in real time.

(b) It redirects FortranLint output (as explained in section 2.3.1).
By default, “-+” (or /SUMMARY) redirects the output to files named
flint.Int, flint.tre, etc. “-S” (or /SPLIT) may be used to specify a
different base name.

(c) It displays an error-message summary (as described in section 2.3.2).

For example, the following commands will analyze demo.f (or demao.for), display
a progress meter, send analysis output to flint.Int, and display an error-message
summary after analysis is completed:

flint -fg+ demo.f

or
flint /FYI /GLOBAL /[SUMMARY demo.for under VMS

2.4 Call Treesand Cross Reference Tables

FortranLint will optionally generate a diagram of program structure (i.e., a “call
tree”) and a symbol-table cross-reference.

For example, the following commands will analyze demo.f (or demo.for), output a
call tree to the file demo.tre, and output a cross-reference to the file demo.xrf:

flint -tx demo.f -Sdemo
or
flint /TREE /XREF demo.for /SPLIT=demo under VMS

For additional information on call trees, see chapter 7. For additional information
on cross-reference tables, see chapter 8.

Cleanscape Software FortranLint User’'s Manual Version 7.x

12 2. Getting Started

Cleanscape Software FortranLint User's Manual Version 7.x

3. Command Reference 13

3

Command Reference

3.1 Command-Line Options

3.1.1 Command Format

To run FortranLint, use the command flint, followed by zero or more option switches and
one or more file names:

flint [options] [filel [file2...]] [file3.Ibt...] [file4.fdb...]

“filel file2...” are FORTRAN source files. “.Ibt” files are optional call-interface library files
(explained in chapter 9). “.fdb” files are optional Xlint database files (explained in chapter
13).

If no options or file names are specified, flint will display a “help” screen.

FORTRAN source files may use any valid FORTRAN filename extension. “.f” is a special
case; , if a source file has the “.f” extension, FortranLint will run the ‘C’ preprocessor on
the file before analyzing it.

Option switches may be specified in any order, and may be intermixed with filename
arguments.

3.1.2 Option Format

Options are specified by single-character switches; for example, “-x”. Lower-case options
take no arguments, and may be combined into a single switch. For example, “-stx” is
equivalent to “-s -t -x”. Upper-case options require one or more arguments; these options
cannot be combined.

Arguments are specified for UNIX and Windows switches as follows:
-P argument single- argument switches

or
-P argl,arg2,args3,... multi- argument switches

Cleanscape Software FortranLint User’'s Manual Version 7.x

14

3. Command Reference

Under VMS, options are specified by “word” switches (for example, /XREF). “Word”
switches are not case-sensitive. They may be abbreviated, provided that the abbreviations
are unique. For example, /XREF is an abbreviation for /XREFERENCE.
Arguments are specified for VMS switches as follows:

/PORT=argument single- argument switches
or

/PORT=(arg1,arg2,arg3,...) multi- argument switches
Note: Under VMS, switches should not include spaces.

Switch arguments are cumulative. For example, , the following commands are equivalent:

flint -O 123 -O 200,375 foo.f
flint -O 123,200,375 foo.f

Under VMS, these commands are equivalent:

flint /SUPPRESS=123 /SUPPRESS=(200,375) foo.for
flint /SUPPRESS=(123,200,375) foo.for

To disable an option , add an extra dash to the option switch. For example, “-w” enables
warning messages and “--w” disables them.

To disable an option under VMS, add the word “NO” to the option switch. For example,
/WARN enables warning messages and /NOWARN disables them.

When an option is disabled, arguments accumulated up to that point are discarded. If the
option is re-enabled subsequently, it “starts over”.

For example, , the following commands are equivalent:

flint -P ANSI,CRAY --P -P SGI foo.f
flint -P SGI foo.f

Under VMS, these commands are equivalent:

flint /PORT=(ANSI,CRAY) /NOPORT /PORT=SGI foo.for
flint /PORT=SGI foo.for

Configuration files may be used to set default values for options. The FortranLint package
includes a predefined configuration file named flint.cfg; for additional information, see
section 3.3.

Cleanscape Software FortranLint User's Manual Version 7.x

3.1.3 List of Options

3. Command Reference 15

FortranLint options are listed below:

-a, /ANSI

Description:

Syntax:

VMS syntax:

-B, /DATABASE=

Description:

Syntax:

VMS syntax:

-d, /DLINES

Description:

Syntax:

VMS syntax:

Cleanscape Software

Reports non-ANSI constructs. If FortranLint is run in FORTRAN 77
mode, this switch has the same effect as
“-P ansi77” (or /PORT=ansi77).

If FortranLint is run in Fortran 90/95 mode, this switch has the same
effect as “-P ansi90” (or /PORT=ansi90).

Note 1: To set the language mode, use the -7, -9 and/or /LANG
switches.

Note 2: ANSI is limited to F77 or F90. Use -7 or -9 explicitly if you
intend to perform ANSI checks.

-a

/ANS]

Creates a specified database (.fdb) file. FortranLint and Xlint use
database files to regenerate call trees, cross-reference tables, and
diagnostic messages. For additional information, see chapter 13.
Note: FortranLint adds the “.fdb” filename extension automatically.
-B file

/DATABASE=file

Source lines starting with “D” in column one (or “Y”, for EPC code)
are “debug” lines.

By default, “debug” lines are treated as comment lines. If “-d” (or
/DLINES) is specified, FortranLint will process “debug” lines along
with normal source code.

Note: This option is valid only for fixed-form code.

-d

/DLINES

FortranLint User's Manual Version 7.x

16

Description:

Syntax:

VMS syntax:

-e, /[EXTEND

Description:

Syntax:

VMS syntax:

-E, /FILES=

Description:

Syntax:

VMS syntax:

Cleanscape Software

3. Command Reference

(UNIX/Windows only.) Defines symbols for the ‘C’ preprocessor.
Applies only if source files are preprocessed (*“.f” filename extension
or “-p” option).

For additional information, see section 4.3.

-D symbol[=valug]....

N/A

By default, if the source format is fixed form, characters past column
72 are ignored. If this option is specified, the source-line width is
extended to 132 columns.

For additional information, see section 4.1.
-e

/EXTEND

Reads a specified file and adds its contents to the FortranLint
command line.

The file may contain source-file names and/or command-line option
switches. Entries may be separated by commands, new lines, or
spaces, and may be specified in any order.

Nested expansions are allowed, i.e., the specified file may use the “-E”
(or /FILES) option to process lower-level files.

Wildcards are not supported. 1.e., the specified file cannot include
entries of the form *.for

This option cannot be suppressed, i.e., “--E” and /NOFILES are
not supported.

For additional information, see section 3.3.
-E file,...
/FILES=(file,...)

FortranLint User's Manual Version 7.x

-F, /FLOW

Description:

Syntax:

VMS syntax:

/[FORM=
See “-R”.
-f, IFYI

Description:

Syntax:

VMS syntax:

-9, /GLOBAL

Description:

Syntax:

VMS syntax:

-i, /INCLUDE

Description:

Syntax:

VMS syntax:

Cleanscape Software

3. Command Reference 17

Enables local dataflow analysis.

For more information, see Section 5.6.
-Fon

/FLOW=o0n

Enables FY1 (or “for your information”) diagnostics.

FYI diagnostics are informational messages that may (or may not)
indicate problems.

-f

/FYI

Global analysis. This option is strongly recommended.

By default, subprograms are processed on an individual basis, and call
interface checking is not performed. The “-g” (or /GLOBAL) option
enables “global” analysis. If this option is used, FortranLint checks for
inconsistencies between subprograms; for example, invalid arguments
or common-block problems. This option also improves usage
checking and enhances cross-reference output.

n!
/GLOBAL

Expands INCLUDE files in source listings. This option applies only
when source listings are enabled (see “-I” or /LISTING).

/INCLUDE

FortranLint User's Manual Version 7.x

18 3. Command Reference

-I, /PATH=

Description: Adds one or more directories to the include-file search list. This
switch affects both INCLUDE files and “#include” files.

For additional information, see sections 4.2 and 4.3.
Syntax: -1 path,...
VMS syntax: /PATH=([path],...)
Example: -1 ../myftn,/usr/sam/headers

/PATH=([FTNCODE],[USR.HEADERS]) under VMS

/IMPLICIT

See “-m”.

/ILANG=

See “-7”and “-9”.

-I, /LISTING
Description: Outputs a source listing with line numbers.
Syntax: -l (lower-case ell)

VMS syntax: /LISTING

-L, /LIBRARY=

Description: Creates or updates a library template file.
This option adds interface information for the current source files to
the specified library template (or “.Ibt”) file. “.Ibt” files may be used
to speed up subsequent runs. For additional information, see chapter
9.
Note: This option causes FortranLint to run in a special mode,
bypassing normal analysis. Consequently, input files must be free of
errors before this option is used.

Syntax: -L file.Ibt

VMS gyntax: /LIBRARY=file.Ibt

Cleanscape Software FortranLint User's Manual Version 7.x

Example:

/LPP=

See “-Y”.

-m, /IMPLICIT
Description:

Syntax:

VMS syntax:

-M, /MISC=

Description:

Cleanscape Software

3. Command Reference 19

flint -L vmslib.lbt vmslib.Ish

flint /LIBRARY=mylib.Ibt mylib.for under VMS

Reports the use of implicit data typing.

-m

/IMPLICIT

(F90 only)

Miscellaneous options:

ansi_maxloc

cpp:“opt”

depend

Modifies the rules used for HPF checking. For
additional information, see section 4.9.

Pass opt through to the preprocessor. Example:
-Mcpp:“-U__FOO__"

If this sub-option is specified, Fortran 90 source file
order is irrelevant. Note: This sub-option adds an
extra pass, which reduces processing speed slightly.

depend:filename

help
hpf

ignore_log

libcom

FortranLint will output the sorted file list and the file
dependencies via USE association to the specified file.
The filename extension “.dep” is added automatically.

If the source files are in order, depend is not required.

Outputs a “help” screen describing these sub-options.

Enables HPF checking. For additional information, see
section 4.9.

Ignore VMS logicals inside INCLUDE statements.
Useful when VMS Fortran files are processed under
Windows or UNIX.

To specify the INCLUDE directories which should be
used locally instead of the "logicals”, add them using -I.

Check source-level common blocks against common
blocks declared inside FDB libraries; see section 10.4.

FortranLint User's Manual Version 7.x

20

Syntax:
VMS syntax:
/NOI4
See “-27.
-0
Description:

Cleanscape Software

3. Command Reference

libext Do not search FDB files for unresolved procedures —
treat such procedures as externals instead. See section
10.4.

noexit For UNIX users who use shell scripts to check

FortranLint results. This sub-option tells FortranLint
to return zero unless errors were detected.

omp Perform a heuristic analysis of common OpenMP
problems. It is especially suited for customers moving
from sequential to parallel code. This feature is licensed
separately; contact Cleanscape for additional
information.

path_ignore Ignores directory paths inside INCLUDE statements.
Useful when Fortran files are moved from one machine
to another. Use —I to specify what directories should be
used.

uselbt Modifies the precedence rules used for library template
(.Ibt) files. For additional information, see section 9.3.

-M option,...
/MISC=(option,...)

Reformat Flint’s output with flexibility as to placement of the
sections. Valid entries and their meanings are:

$ = Space

F = Filename (fully qualified)

L = line number

C = Column number

S = Severity (error, warning, info)

T = Type (syntax, interface, usage, portability, 1/0, internal)
= Error number

M = Message content string

Any other characters go into output string at that location.

Example: Integration with Microsoft Visual Studio. According to
http://blogs.msdn.com/b/msbuild/archive/2006/11/03/msbuild-
visual-studio-aware-error-messages-and-message-formats.aspx, a
message in this format:

FortranLint User's Manual Version 7.x

http://blogs.msdn.com/b/msbuild/archive/2006/11/03/msbuild

3. Command Reference 21

filenanme(line#,col#) : Error #123 : This is sone text
directed to its output window will be picked up automatically such
that double-clicking the message will cause VS’ internal editor to jump
to the “offending” sourceline.

To accomplish this in Flint, use the following command parameters:
-0 "F(L, O $: STS#S$: $M' - WL99

which output two lines, first source, then analysis message:

| STAT = PRINTIT(CURI TEM 1)
c:\ progra~2\cl eanscape\ flint\exanpl es\ deno. f (49, 16)
ERROR Interface #95 : this nane is defined as a
subrouti ne.

Notes:

(1) On Unix/Linux, put the format string in single quotes to prevent
command-line parsing, or escape any ‘$’ characters. On
Windows, encasing in double-quotes is recommended.

(2) Use - w99 if your editor/IDE expects message all on one line.

(3) At present, the message text can only be output at the end. If this
is an issue, email support@cleanscape.net.

Unix Syntax: -0 ‘message_format’
Windows Syntax: -0 “message_format”

VMS syntax: N/A

-O, /SUPPRESS=

Description: Disables or enables individual diagnostic messages.

Syntax: -O msg#,msg#,... disables messages by number
-O +msg#, +msg#,... enables messages by number
-Oall disables all numbered messages
-O +all enables all numbered messages
-O msg#, +msg#,... disable/enable can be mixed

VMS syntax: /SUPPRESS=(msg#,...) disables messages by number
ISUPPRESS=(+msg#,...) enables messages by number

/SUPPRESS=ALL disables all numbered messages
/SUPPRESS=+ALL enables all numbered messages

disable/enable can be mixed
ISUPPRESS=(mSsg#, +msg#,...)

Cleanscape Software FortranLint User’'s Manual Version 7.x

mailto:support@cleanscape.net

22

/OUTPUT=

Description:

Syntax:
VMS syntax:

See also:

Description:

Syntax:

VMS syntax:

-P, /PORT=

Description:

Syntax:

VMS syntax:

Cleanscape Software

3. Command Reference

(VMS only.) Redirects output to a specified file.

Note: , use standard-1/0 redirection (flint ... > foo.out).
N/A
/OUTPUT=Aile

-Sor /SPLIT

(UNIX/Windows only.) Sends all source files through the ‘C’
preprocessor.

Note: FortranLint sends files with the “.F” filename extension
through the ‘C’ preprocessor, whether or not the “-p” option is
selected.

P
N/A

Checks for portability issues related to one or more compilers or
FORTRAN dialects. In other words, “I plan to port my code to the
specified compiler/standard; what issues will there be?”

Supported environments include:

ANSI77 (FORTRAN 77) NCUBE

ANSI90 (Fortran 90) 0S32 (Concurrent)
CRAY SGI

CVF (Compaq Visual Fortran) SUN

HPUX TRUG4

EPC VAXULTRIX
LAHEY (Windows/Linux) VMS

For additional information, see sections 4.5 through 4.7.

NOTE: Modern compilers often offer extensions ranging from F90
to FO3 (e.g., Sun’s compiler for F95 offered the BIND command), so
in general Flint will work best by not specifying portability options. If
you have a particular issue with your compiler, please email
support@cleanscape.net .

-P system,...

/PORTI[ABILITY]=(system,...)

FortranLint User's Manual Version 7.x

mailto:support@cleanscape.net

3. Command Reference 23

-q, /QUIT

Description: This option is related to FortranLint ’s license manager (see Appendix
C). By default, FortranLint waits for a free license, if none is available.
If “-q” (or /QUIT) is specified, FortranLint terminates immediately,
in this case.

Syntax: -q

VMS syntax: /QUIT

-R, /FORM=

Description: When Fortran 90 sources are processed, FortranLint normally
determines the source format (fixed or free) based on the filename
extension. “-R” (or /FORM) may be used to specify the source
format explicitly. For additional information, see section 4.1.

Note: This option does not apply to FORTRAN 77 code.

Syntax: -R fixed Specifies fixed form
-R free Specifies free form

VMS syntax: /FORM=fixed Specifies fixed form
/FORM=free Specifies free form

-s, /STATISTICS
Description: Enables statistics and related output. If this option is used, FLINT
displays a screen after analysis is completed which includes 1/0
statistics, structural statistics (subroutine counts, etc.) and a list of the
error messages that occurred most frequently in the source code.
Syntax: -S

VMS syntax: /STATISTICS

See also: -+ (or /SUMMARY)
-S, /SPLIT=
Description: Sends FortranLint output to a group of text files.

If this option is used, FortranLint stores its output as follows:

Analysis output name.Int
Statistics (/STATISTICS) name.stt
Call tree (/TREE) name.tre

Cross-reference (/XREF) name.xrf
Where name is specified by “-S name” or “/SPLIT=name” (VMS).

Cleanscape Software FortranLint User’'s Manual Version 7.x

24

Syntax:

VMS syntax:

See also:

ISUMMARY

3. Command Reference

-S name

/SPLIT=name

-+ (or /SUMMARY)

See “-+” at the end of this list.

ISYSTEM=

See “-V”.

-t, /TREE

Description:

Syntax:

VMS syntax:

See also:

-T, /TREE=

Description:

Cleanscape Software

Generates a “call tree”; i.e., a structural diagram of the “call” structure
used by the source code. For call-tree format options, see “-T” or
/TREE. For additional information on call trees, see chapter 7.

Sets call-tree sub-options and generates a call tree. (The “help” sub-
option is a special case.)

The following sub-options are supported:

alphabetical

condensed

graphics=xxx

head:symbol

FortranLint normally displays sub-trees using the
order in which routines were called. If alphabetical is
used, sub-trees are displayed in alphabetical order.
alphabetical may be abbreviated to alpha.

To restore the default mode of operation, use “-T
noalpha” (or /TREE=noalpha).

Merges multiple calls to the same routine. To restore
the default mode of operation, use
“-T nocondensed” (or /TREE=nocondensed).

Changes the graphics characters used to print the call
tree. For additional information, see section 7.3.5.

Generates a call tree starting at the specified symbol.

FortranLint User's Manual Version 7.x

Syntax:

VMS syntax:

-u, /USAGE

Description:

Syntax:

VMS syntax:

Cleanscape Software

3. Command Reference 25

help Displays a “help” screen describing the call-tree options.
No processing is done, if this sub-option is selected.

nolibrary Suppresses calls to routines defined in libraries (i.e.,
“.Ibt” files). For additional information, see section
7.4.3 and chapter 9.

noundefined Suppresses calls to undefined routines.

squish To improve readability, FortranLint normally adds
extra white space to call trees. “squish” removes the
extra space.

To restore the default mode of operation, use “-T
nosquish” (or /TREE=nosquish).

trim This sub-option merges redundant sub-trees to reduce
the size of the output.

The configuration file shipped with FortranLint enables
trim, by default. To disable this option, use “-T
notrim” (or /TREE=notrim).

“trim” is strongly recommended for systems that
are low on disk space.

For additional information on call trees, see chapter 7.
-T option,...

Note: To set call-tree options without generating a call tree, use -T
option,... followed by “--t”.

/TREE=(option,...)

Note: To set call-tree options without generating a call tree, use
/TREE=(option,...) followed by “--t”.

Enables variable usage checking. For example, this feature detects
variables that are referenced, but not set.

The configuration file shipped with FortranLint enables this option,
by default. 1f usage checking is not required for a given project, “--u”
(or /NOUSAGE) may be used to disable this option. Some
operations will be slightly faster if usage checking is disabled.

-u

/USAGE

FortranLint User's Manual Version 7.x

26 3. Command Reference

/UNIXHELP

See “-?”" at the end of this list.

-V, /SYSTEM=
Description: FortranLint normally assumes that the FORTRAN compiler running

on the host system will be used. To select a different environment, use
this option. In other words, “Assume my code was written for the
following host, even though I'm running Flint on a different host”.
“-V” (or /SYSTEM) tells FortranLint to assume that a specific
compiler (or FORTRAN dialect) will be used.
This allows FortranLint to resolve ambiguous extensions (constructs
that look similar, but are handled differently in different
environments).
Supported environments include:

ANSI77 (FORTRAN 77) NCUBE

ANSI9O0 (Fortran 90) 0832 (Concurrent)

CRAY SGI

CVF (Compagq Visual Fortran) SUN

HPUX TRU64

EPC VAXULTRIX

LAHEY (Windows/Linux) VMS
For additional information, see sections 4.5 through 4.7.

Syntax: -V system

VMS syntax: /SYSTEM=system

-w, /WARNINGS
Description: Enables “warning” messages.

The configuration file shipped with FortranLint enables this option,
by default. To disable warnings, use --w (or /NOWARNINGS).

Syntax: -wW

VMS gyntax: /WARNINGS

Cleanscape Software FortranLint User's Manual Version 7.x

-W, /WIDTH=

Description:

Syntax:

VMS syntax:

-X, IXREF

Description:

Syntax:

VMS syntax:

-X, IXREF=

Description:

Cleanscape Software

3. Command Reference 27

Sets output width in columns. This option affects all output,
including diagnostic messages and cross-reference tables.

Any value between 40 and 500 may be used. , the default width is 80
columns. Under VMS, the default width is 80 columns unless
/OUTPUT is used:; in this case, the default width is 132 columns.

-W number

/WIDTH=number

Generates a cross-reference table. For cross-reference format
options, see “-X” or /XREF. For additional information on cross-
reference tables, see chapter 8.

-X

/XREF or /XREFERENCE

Sets cross-reference sub-options and generates a cross-reference table.

The following sub-options are supported:

freeform Selects a compact variable-width format. This is the
default setting.

tabular Selects a fixed-width (132 column) format.

linenumbers Locations by line numbers rather than by subprogram.

noequiv By default, the cross-reference entry for a given
variable includes usage information for the associated
equivalences, whether or not the variable is used
directly. noequiv suppresses equivalence usage
information.

nolegend Suppresses the legend that describes line number
usage codes.

filters FortranLint supports cross-reference filters. Filters

may be used to generate cross-reference tables for
items that meet specific constraints. For additional
information, see sections 8.3 and 8.4.

For additional information on cross-reference tables, see chapter 8.

FortranLint User's Manual Version 7.x

28

Syntax:

VMS syntax:

-Y, /LPP=

Description:

Syntax:

VMS syntax:

-2, INOl4

Description:

Syntax:

VMS syntax:

-7, ILANG=
_9’
-3

Description:

Syntax:

VMS syntax:

Cleanscape Software

3. Command Reference

-X option,...

Note: To set cross-reference options without generating a cross-
reference, use “-X option,...”” followed by *““--x”.

/XREF[ERENCE]=(option,...)

Note: To set cross-reference options without generating a cross-
reference, use /XREF=(option,...) followed by *--x”.

Sets lines per output page. To disable pagination, use a page length of
zero.

The default value is zero for console output and 60 lines per page if
“-S”7, “-+”, /OUTPUT, /SPLIT, and/or /SUMMARY are used to
redirect output.

-Y number

/LPP=number

On most systems, integers and logicals are four bytes long, by default.

If “-2” (or /NOI4) is used, FortranLint interprets INTEGER and
LOGICAL as INTEGER*2 and LOGICAL*2. Additionally, integer
and logical constants are treated as two-byte values unless they are too
large to fit into the smaller size.

-2

/NOI4

This option may be used to specify the input language (FORTRAN
77, Fortran 90/95, or Fortran 2003).

-7 Selects FORTRAN 77
-9 Selects Fortran 90/95
-3 Selects Fortran 2003

/LANG=F77 Selects FORTRAN 77
/LANG=F90 Selects Fortran 90/95
/LANG=F03 Selects Fortran 2003

FortranLint User's Manual Version 7.x

Description:

3. Command Reference 29

Note: Specify -7 or -9 explicitly if you intend to perform ANSI (-a)
checks; ANSI checking is limited to F77 or F90 only.

(not VMS.) Specifies the path to the preprocessor

directory. NOTE: Under Unix/Linux, the default is Zusr/lib.

Syntax:

-+, ISUMMARY

Description:

Syntax:

VMS syntax:

-?, JUNIXHELP

Description:

VMS syntax:

Cleanscape Software

-# preprocessor_path

The command-line option “-+” or /SUMMARY (under VMS)
combines three operations:

(@) This option displays a progress meter that tracks the progress of
FortranLint in real time.

(b) It redirects FortranLint output (as explained in section 2.3.1).
By default, “-+” (or /SUMMARY) redirects the output to files
named flint.Int, flint.tre, etc. “-S” (or /SPLIT) may be used to
specify a different base name.

(c) It displays an error-message summary (as described in section
2.3.2).

-+

/SUMMARY

(VMS only.) Displays FortranLint ’s “letter” option switches.

This option is not supported . To display the “letter” switches ,
execute flint with no parameters.

For additional information, see section 3.1.2.

-? or /UNIXHELP

FortranLint User's Manual Version 7.x

30 3. Command Reference

3.1.4 Using UNI X SwitchesUnder VM S

FortranLint 's “letter” option switches (-letter) can be also used under VMS.

“Letter” switches can be used inside flint configuration files with no special rules or
restrictions. However, if “letter” switches are used on the VMS command line, three rules

apply:

(@) “letter” switches do not include white space
(b) “letter” switches are limited to one argument per switch

(c) upper-case switches must be double-quoted

For example, the following VMS flint commands are equivalent:

flint /PORT=sgi foo.for

flint “-Psgi” foo.for

To specify multiple arguments for a “letter” switch on the VMS command line, use
multiple copies of the switch. For example, the following commands are equivalent:

flint /TREE=(condensed,nolibrary) foo.for

flint “-Tcondensed” “-Tnolibrary” foo.for

As , lower-case “letter” options may be combined into a single switch. For example, the
following commands are equivalent:

flint /IMPLICIT /XREF /NOI4 foo.for

flint -mx2 foo.for

Additional VMS examples:

1) flint /IMPLICIT foo.for

flint -m foo.for

2) flint /SPLIT=result WARNINGS /WIDTH=50 foo.for
flint “-Sresult” -w “-W50" foo.for

3) flint /ANSI /FYI /GLOBAL /SUPPRESS=(201,202) foo.for
flint -afg “-0201" “-0202" foo.for

Cleanscape Software FortranLint User's Manual Version 7.x

3. Command Reference

3.2 Summary of Options

3.2.1 UNIX/Windows Option Summary

Sour ce configuration options:

-2

-a

-O number,...
-P system,...
-u

-w

Cross-reference options:
-X
-X option,...

Call tree options:
-t
-T option,...

Output format options:
-1
-
-0 “message_format”
-W number
-Y number

Other output control options:
-+
-B file
-L file
-S
-S file

Miscellaneous options:
-D definition,...
-E file
-M option,...
-Hpreproc_path
-q

Process “debug” lines

31

Extend source width to 132 columns

Set search path for INCLUDE files

Send source files through preprocessor (CPP)

Specify Fortran 90/95 source form
Specify FORTRAN dialect
Two-byte integers and logicals
Select FORTRAN 77

Select Fortran 90/95

Select Fortran 2003

Report non-ANSI constructs
Report FY| messages

Enable global processing

Report implicit typing

Suppress individual error messages
Enable portability checking

Check data usage
Enable warnings

Generate cross-reference table
Specify cross-reference sub-options

Generate “call tree”
Specify “call tree” options

Expand INCLUDE files
Generate source listing

Specify message output format
Set output page width

Set output page length

“Progress/summary” mode (implies -S)

Create database (.fdb) file
Create library (.Ibt) file
Generate statistics

Split output and redirect it

Define preprocessor-level symbols
Expand configuration file
Miscellaneous options

Preprocessor if different than cpp in $PATH

Quit if no licenses are available

Cleanscape Software FortranLint User’'s Manual

Version 7.x

32 3. Command Reference

3.2.2 VM S Option Summary

Sour ce configur ation options:

/DLINES Process “debug” lines
/EXTEND Extend source width to 132 columns
/FORM=form Specify Fortran 90/95 source form
/LANG=language Specify language (F77 or F90/95)
/NOI4 Two-byte integers and logicals
/SYSTEM=system Specify FORTRAN dialect
/PATH=([path],...) Set search path for INCLUDE files
Diagnostic options:
/ANSI Report non-ANSI constructs
/FYI Report FYI messages
/GLOBAL Enable global processing
/IMPLICIT Report implicit typing
/PORT=(system,...) Enable portability checking
/SUPPRESS=(number,...) Suppress individual error messages
/USAGE Check data usage
/WARNINGS Enable warnings
Cross-reference options:
/XREF Generate cross-reference table
/XREF=(option,...) Specify cross-reference sub-options
Call tree options:
/TREE Generate “call tree”
/TREE=(option,...) Specify “call tree” sub-options
Output format options:
/INCLUDE Expand INCLUDE files
/LIST Generate source listing
/LPP=number Set output page length
/WIDTH=number Set output width
Other output control options:
/DATABASE=file Create database (.fdb) file
/LIBRARY=file Create library (.Ibt) file
/OUTPUT=file Redirect output to a specified file
/SPLIT=file Split output and redirect it
/STATISTICS Generate statistics
/SUMMARY “Progress/summary” mode (implies /SPLIT)
Miscellaneous options:
/FILES=file Expand configuration file
/MISC=(option,...) Miscellaneous options
/QUIT Quit if no licenses are free
/UNIXHELP or -? Display UNIX “letter” options

Cleanscape Software FortranLint User's Manual Version 7.x

3. Command Reference 33

3.3 Configuration Files

Command-line arguments may be specified indirectly, using text files.

If bar.txt is a text file containing option switches or filenames, the following commands
will add the contents of bar.txt to the FortranLint argument list:

flint -E bar.txt foo.f
or
flint /FILE=bar.txt foo.for under VMS
bar.txt may specify any number of switches or filenames. There are two restrictions:
(a) Arguments must be separated by white space or new lines
(b) , wildcards (such as *.for) are not supported
Files used this way are called configuration files.
FortranLint may be used for multiple purposes: quick syntax checks, mapping out
unfamiliar programs, etc. Configuration files are a convenient way to select different sets

of options.

To set FortranLint options automatically, create a configuration file named flint.cfg and
add option switches to this file.

FortranLint searches for flint.cfg in the following directories:
(@) Current working directory

(b) Directories specified by the environment variable FLINTCFG or logical
FLINTCFG (under VMS)

(c) FortranLint installation directory, as specified by the environment variable
FLINTHOME or logical FLINTHOME (under VMS)

Note: Command-line option switches may be used to override options set by flint.cfg.

Multiple configuration files may be used; e.g., for different projects. FLINTCFG should
be set appropriately for users working on each project.

For additional information on FLINTCFG and FLINTHOME, see section 3.4.

FortranLint does not impose a fixed limit on configuration-file line length. However,
system constraints may impose a limit for some environments.

Cleanscape Software FortranLint User’'s Manual Version 7.x

34 3. Command Reference

This is the default flint.cfg file as of version 6:

I Default Flint configuration file. Included by default in every Flint run.
I Note carefully the suppressed messages; -O276 suppresses numeric conversion
I like integer->real (integer->char is detected as error 161).

-w I enable warnings

-u I enable usage checking

-0207 I suppress hollerith constant warning

-0276 I suppress data type conversion FYI

-076 I suppress mixed mode arithmetic FYI
-0261 I suppress initializer data type converted FYI
-Ttrim I make TRIM the default tree format

--t I default is to NOT output tree

-Xno.unreferenced.parameters ! Eliminate unreferenced parameters
-Xno.unused.common.variables ! Show common variables only where they are used

-Xno.named.|IEEE_* I Exclude symbols for IEEE intrinsic modules
-Xno.named.C_* I Exclude symbols for ISO intrinsic modules
-Xno.named.ISO_* I Ditto

-Xno.named.COMPILER_* I Exclude FO8 COMPILER_VERSION/COMPILER_OPTIONS
--X I default is to NOT output xref

Note: VMS configuration files may use “letter” switches without special rules or
restrictions. However, several restrictions apply if “letter” switches are used on the VMS
command line. For additional information, see section 3.1.2.

For the current set of default options, see the copy of flint.cfg provided with Flint.

Usage Hint: If you are expecting, but not seeing, certain messages from Flint, check the
flint.cfg file in use. One classic example is the automatic conversion of integer to real, as
inr = sel ected_char_kind(*ascii’). Thisresults in Message #276, but as you can
see from above, this message is suppressed by default. (#276 is an FY1 only because it is
numeric conversion; an integer-to-character conversion attempt warrants Error #161.)

3.4 Environment Variables/ Logicals

FortranLint recognizes the following environment variables or logicals (under VMS):

Variable Description

FLINTCFG Directory that contains alternate support files (see below)
FLINTHOME FortranLint installation directory

FLINTHOST Hostname of system running license-manager daemon

SYS$SCRATCH (VMS only) Directory used for temporary files. Flint uses /tmp on
Unix, and % TEMP%, %TMP%, or c:\ in that order on Windows.

FLINTHOME specifies the location of the main FortranLint directory (i.e., the directory
where the flint binary exists). This variable is set during installation (see Appendix A or
Appendix B).

Flint includes a license-manager daemon (see Appendix C). FLINTHOST specifies the
system where the daemon resides. This variable is also set during installation.

Cleanscape Software FortranLint User's Manual Version 7.x

3. Command Reference 35

FortranLint uses the following run-time support files:

flint.cfg Configuration file (see section 3.4)

flint.err Error messages

flint.hls “Help” file

ieeea.lsh IEEE Arithmetic intrinsic module

ieeee.Ish IEEE Exceptions intrinsic module
ieeef.Ish IEEE Features intrinsic module
isobind.Ish ISO C Binding intrinsic module

isoenv.Ish ISO Fortran Environment intrinsic module

unixlib.lbt UNIX library definitions (see chapter 9)
vmslib.Ibt VMS library definitions

By default, FortranLint uses the copies stored in the main FortranLint directory (i.e., the
FLINTHOME directory). However, if FLINTCFG is defined, FortranLint searches the
FLINTCFG directory for support files before it loads the default copies. Users may set
this variable to load customized versions of the support files.

FLINTCFG specifies one or more directories using the following format:
directory-path

or
directory-path<SEP>...<SEP>directory-path

where <SEP>is : for Unix, ; for Windows, or , for VMS.

Users may define TMPDIR or SYS$SCRATCH (under VMS) to set or change the
directory where FortranLint stores its temporary files.

Note: TMPDIR is ignored on UNIX systems that don’t support the standard library
routine tempnam().

Cleanscape Software FortranLint User’'s Manual Version 7.x

36 3. Command Reference

Cleanscape Software FortranLint User's Manual Version 7.x

4. Flint Source Conventions 37

A

Source Conventions

4.1 Sour ce Format

FortranLint accepts one or more FORTRAN source files as input. Each source file
may contain one or more FORTRAN subprograms (or program units). A
subprogram/program unit may be a subroutine, a function, a block data module, or a
main program. INCLUDE-file names should not be specified explicitly on the
command line or in configuration files.

FortranLint understands several different source formats. In FORTRAN 77 mode (-7
or /LANG=F77 option), FortranLint assumes ANSI-standard fixed format, with a
continuation indicator at column 6 and a comment field starting at column 73. To
process FORTRAN 77 code that extends past column 72, add the option *“-e” or
/EXTEND (under VMS).

In Fortran 90/95/03 mode (-3/-9 or /LANG=F03/F90 options), sources may use
either free format or FORTRAN 77 fixed format. Variable-position comments
(starting with ‘") may be used in either fixed or free format. FORTRAN 77-style
comments (starting with a ‘C’ in column 1) may be used only in fixed format. Free-
format lines may contain up to 132 characters.

TAB formatting is supported for target environments that allow it; i.e., if the label field
contains a TAB character, processing skips to the first non-blank character. If that
character is a non-zero digit, the source line is treated as a continuation line; otherwise,
the line is treated as a statement. TAB-formatted lines may be intermixed with normal
fixed-format lines.

FortranLint normally distinguishes between free-format files and fixed-format files
based on filename extension. By default, “.f90” files are assumed to be free format and
other files are assumed to be fixed or TAB format. To override the default setting, use
the “-R” option or the /FORM option (under VMS). For additional information, see
chapter 3.

The maximum number of continuation lines supported is 1,000 lines per statement, and
there is a maximum of 32,000 significant characters per statement.

Cleanscape Software FortranLint User’'s Manual Version 7.x

38 4. Command Reference

4.1.1 “Debug” Lines

Source lines starting with “D” in column one (or “Y”, for EPC code) are “debug”
lines. By default, “debug” lines are treated as comment lines. If “-d” (or /DLINES) is
specified, FortranLint will process “debug” lines along with normal source code.

4.2 IncludeFiles

Standard INCLUDE statements are supported. FortranLint searches the following
directories for INCLUDE files:

(@) The directory which contains the source file that the current INCLUDE
statement belongs to.

(b) The user’s current directory (at the time when FortranLint was started).

(c) (VMS only.) The absolute path specified by the INCLUDE statement
(taking logicals into account).

(d) Directories specified by “-1” (or /INCLUDE) option switches, moving
from left to right.

(e) The standard directory “/usr/include”. (UNIX) —OR-
the directories in environment variable %INCLUDE% (Windows)

If an INCLUDE file can’t be located, FortranLint prints an error message and attempts
to continue.

INCLUDE files may be nested up to 10 levels deep.

Note: FORTRAN programs may use both INCLUDE statements and “#include”
statements. “#include” is similar to INCLUDE; however, “#include” statements are
handled by the ‘C’ preprocessor. For additional information, see the next section.

4.3 'C’ preprocessor (UNIX/Windows only)

FortranLint supports the ‘C’ preprocessor; i.e., source files may use standard ‘C’
“#define”, “#ifdef”, and “#include” statements.

Source files with “.F” filename extensions are sent through the preprocessor
automatically. 1f the command-line option “-p” is used, FortranLint sends all source
files through the preprocessor, regardless of filename extension. Preprocessor output
is then checked at the FORTRAN level. Line numbers used for error messages are
translated appropriately.

By default, FortranLint assumes that the preprocessor is Zusr/lib/cpp. To use a
different preprocessor, run flpatch and patch the cpp parameter in the flint
executable. (For additional information, see Appendix A.)

For Windows users, the first cpp in %PATH% is used. One can be specified in the
GUI (see GUI online help) or using the -# command line option.

Cleanscape Software FortranLint User's Manual Version 7.x

4. Flint Source Conventions 39

The option switch “-D”” may be used to define symbols at the preprocessor level, and
the option switch “-1” may be used to specify “#include” directories. For additional
information, see chapter 3.

FortranLint passes the following command-line arguments to the preprocessor:

(@) “-D” and/or “-1” option switches, if any
(b) FORTRAN source-file name
(c) Output-file name

Note: Files loaded by INCLUDE statements are loaded directly by FortranLint; i.e.,
these files are not preprocessed.

4.4 CDD and DBM S Processing (VM S Only)

4.4.1 CDD (Common Data Dictionary) Declarations
FortranLint supports standard DICTIONARY statements.

DICTIONARY is similar to INCLUDE in that it adds declarations to the current
routine. However, DICTIONARY differs from INCLUDE in that it takes data
structures from a CDD dictionary instead of a source file. FortranLint uses the
FORTRAN compiler as a preprocessor to expand DICTIONARY statements into
normal code.

4.4.2 DBM S Support (FDML Statements)

FortranLint supports FDML statements (for example, invoke, ready, use, commit, rollback,
disconnect, connect, erase, get, modify, fetch, find, free, also, null, within, keep, reconnect, and store).
invoke statements are preprocessed by the FORTRAN compiler in the same manner as
DICTIONARY statements. FortranLint processes all other FDML statements
directly.

Note: Usage checking is suppressed for variables that are created by invoke statements.

4.4.3 CDD/DBM S Requirements

FortranLint uses the FORTRAN compiler to expand DICTIONARY and invoke
statements into normal code. The FORTRAN compiler must therefore be installed
before these statements can be processed.

Additionally, the VMS CDD package must be installed before DICTIONARY
statements can be processed, and the VMS DBMS package must be installed before
invoke statements can be processed.

4.5 FORTRAN 77 Extensions

Cleanscape Software FortranLint User’'s Manual Version 7.x

40

4. Command Reference

FortranLint 's FORTRAN 77 support is based on the 1978 ANSI FORTRAN 77
standard. FortranLint also supports extensions implemented by the following

compilers.

System Compiler Dialect code
(ANSI standard) FORTRAN, ANSI X3.9-1978 ANSI77
Cray YMP UNICOS CFT775.0 CRAY
Alpha/Digital UNIX (OSF1) DEC FORTRAN 6.0 DECUNIX
VAXIVMS DEC FORTRAN Version 6.0 DECVMS
HP9000 Series HPUX FORTRAN/9000 8.05 HPUX
Windows and Linux systems Lahey Fortran F77 LAHEY
NCUBE NCUBE Fortran NCUBE
0S32 Concurrent Fortran 0S32
Silicon Graphics IRIX-4D 3.3 FORTRAN 77 SGl

SunOS / Solaris Sun FORTRAN 1.4 SUN

VAX Ultrix VAX FORTRAN VAXULTRIX

Extensions supported by FortranLint include, but are not limited to, the following:

Cleanscape Software

Data-type size specifiers (for example, INTEGER*4)
Records, structures, and unions

Cray-style and Apollo-style pointers

Debugging lines with “D” or “Y” in the first column
TAB formatting

In-line comments (both “I”” and *;” styles)

Long symbol names with non-alphanumeric characters
Numerous binary, octal, and hex constant formats
Hollerith constants

Namelist 170

Dozens of system-specific 1/0 statement specifiers
Hundreds of intrinsic functions

All 170 format strings, including embedded expressions
Abbreviated and symbolic expression operators
Recursion

Array sections and array expressions

FortranLint User's Manual

Version 7.x

4. Flint Source Conventions 41

4.6 Fortran 90/95 Extensions

FortranLint’s Fortran 90/95 support is based on the 1992 ANSI Fortran-Extended
(Fortran 90) standard. FortranLint also supports extensions implemented by the
following compilers. NOTE: Modern compilers often offer extensions ranging from
F90 to FO3 (e.g., Sun’s compiler for F95 offered the BIND command), so in general
Flint will work best by not specifying portability options. If you have a particular issue
with your compiler, please email support@cleanscape.net .

System Compiler Dialect code
(ANSI standard) Fortran, ANSI X3.198-1992 ANSI90
Cray Y-MP UNICOS 7.0+ CF90 Release 1.0 CRAY
Compaq Visual Fortran Intel/Compagq Fortran F90 CVs
VAX/Alpha OpenVMS HP/DEC Fortran 90 VMS
EPC EPC Fortran 90 EPC
HP9000 Series HPUX FORTRAN/9000 8.05 HPUX
Windows and Linux systems Lahey Fortran F90 or F95 LAHEY
Silicon Graphics IRIX 6.1 MIPSpro Fortran 90 SGl
SunOS / Solaris Sun FORTRAN 1.4 SUN
Alpha/Digital UNIX (OSF1) DEC Fortran 90 TRU64

In particular, FortranLint supports High Performance Fortran (HPF). For additional
information on HPF, see section 4.9.

Note: If FortranLint is used in Fortran 90/95 mode, the FORTRAN 77 extensions are
supported, with the exception that debugging lines are not allowed in free format.

4.7 Specifying FORTRAN Dialect

FortranLint normally assumes that the FORTRAN compiler running on the host
system will be used.

To select a different compiler, use the “-V” option or /SYSTEM (under VMS) and
specify a dialect code from section 4.5 or 4.6. (For option syntax, see chapter 3.)

To flag code that is not supported by a specific dialect, use “-P” or /PORT (under
VMS), instead.

4.8 Default Sizes

On most systems, integers and logicals are four bytes long, by default. To change the
default size, use the option “-2” or /NOI4 (under VMS).

If either of these options are selected, FortranLint interprets INTEGER and
LOGICAL as INTEGER*2 and LOGICAL*2. Additionally, integer and logical
constants are treated as two-byte values, unless they are too large into fit into the
smaller size.

Cleanscape Software FortranLint User’'s Manual Version 7.x

mailto:support@cleanscape.net

42 4. Command Reference

4.9 High Performance Fortran (HPF)

FortranLint supports High Performance Fortran (HPF).

By default, HPF statements are treated as normal comments. To enable HPF
checking, use the option “-Mhpf” or /MISC=hpf (under VMS).

To add HPF processors and templates to a cross-reference, enable HPF checking and
select linenumbers or tabular output format:

, use: -Mhpf -Xlinenumbers
or -Mhpf -Xtabular

Under VMS, use: IMISC=hpf /XREF=linenumbers
or IMISC=hpf /XREF=tabular

For additional information on the linenumbers and tabular formats, see section 8.3.

For non-DEC target systems, FortranLint normally checks argument lists for
MAXLOC() and MINLOC() using the following rules:

MAXLOC(ARRAY, DIM, MASK)
MINLOC (ARRAY, DIM, MASK)

ARRAY must be an integer or real array

DIM is optional; if present, must be integer scalar
MASK is optional; if present, must be of local type and conformable with
ARRAY

To apply the ANSI X3.198-1992 rules for MAXLOC() and MINLOC(), use the
option “-Mansi_maxloc” or /MISC=ansi_maxloc (under VMS). This option
disallows the DIM argument.

Note that ansi_maxloc does not apply to DEC targets (i.e., Digital Fortran 90).

As of Flint version 7, MINLOC and MAXLOC conform to the Fortran 2003
specification; hpf and ansi_maxloc are left in place as described above for legacy users.

Cleanscape Software FortranLint User's Manual Version 7.x

5. Controlling Analysis 43

5

Controlling Analysis

5.1 Setting the Scope

To enable global (inter-module) checking, use the “-g” option or /GLOBAL (under
VMS). Global checking analyzes FORTRAN sources as a group; this enables interface
checking and improves usage checking of variables passed as actual arguments.

If “-g” (or /GLOBAL) is not specified, subprograms are processed on an individual
basis, and call interface checking is not performed. It is usually best to analyze a new
body of code without —g and use it once the local errors are identified/resolved.

5.2 Message Classification
FortranLint checks for the following five general classes of problems:

Syntax problems

Subprogram interface problems
Variable usage problems
Portability problems

Implicitly typed variables

Syntax problems are constructs that will not compile or that may be interpreted by the
compiler in a different way than the programmer intended. This includes symbol
names that have embedded blanks, re-declared or re-dimensioned variables, and poorly
structured branches using GOTOs.

Interface problems are problems with the interaction between subprograms. This
includes inconsistent argument lists in function or subroutine calls, inconsistent
common block organization, and unused or missing subroutines and functions.

Usage problems cover improper use of variables and arrays. Variables should be both
set and referenced; any deviation from this is flagged. Attempted redefinition of
constants in subprogram calls is also flagged.

Portability problems are constructs that are allowed on the host system but are not
recognized or are interpreted differently on other systems. This includes structures,
pointers, data type length specifiers, and other extensions.

Cleanscape Software FortranLint User’'s Manual Version 7.x

44

5. Controlling Analysis

Implicitly-typed variables can be flagged whether or not the “IMPLICIT NONE”
statement is used. If “IMPLICIT NONE” is used, they will be categorized as syntax
errors.

FortranLint breaks syntax problems, interface problems, data usage problems, and
portability problems down into three levels of severity:

Error messages are the most serious and indicate that the code will not
compile or, probably, will not operate correctly.

Warning messages flag constructs that may not operate as intended, that may
cause intermittent problems, or that may make no sense.

FYI (or “for your information’) messages are used to flag minor issues that
may or may not be problems.

5.3 Selecting Analysis L eve

Categories of messages may be enabled or disabled using the following options:

Syntax Always enabled

Interface “-g” or /GLOBAL (under VMS)

Usage “-u” or /JUSAGE (This option is on, by default)
Portability “-a” or /ANSI

-Psystem or /JPORTABILITY=system (see section 5.5)
Implicit typing “-m” or /IMPLICIT

Note: If global interface checking (-g or /GLOBAL) is enabled, usage checking will
detect a wider range of problems.

Severity level of messages in the above categories is controlled with the following
options:

Errors Always enabled
Warnings “-w” or /WARNINGS (This option is on, by default)
FYls “f7or /FYI

To disable a category or level, add an extra dash (e.g., “--w”) or “NO” (e.g.,
/NOWARNINGS) under VMS.

Cleanscape Software FortranLint User's Manual Version 7.x

5. Controlling Analysis 45

Examples:

To perform a comprehensive analysis, use the options “-gamf” or “/GLOBAL
/ANSI Z/IMPLICIT /FY1” (under VMS). As of Flint version 6, we recommend not
using —a or /ANSI, as most compilers have extensions or allow mixed F77 -> F03
features.

To perform basic syntax checking, use “--uw” or “/NOUSAGE /NOWARNINGS”
(under VMS).

5.4 Suppressing Individual M essages

To suppress individual diagnostic messages, use the “-O” (omit) option or
/SUPPRESS (under VMS).

“-O” and /SUPPRESS accept message numbers as arguments. Message numbers are
shown between the category/severity field and the message text. Multiple instances of
the same message have the same number. For additional information, see Appendix E.

“-O” and /SUPPRESS also accept the word “all” as an argument (e.g., “-Oall” or
/SUPPRESS=all). “all” suppresses all numbered messages, including syntax errors.

If message numbers (or the word “all’””) are preceded with a plus sign (“+”), the
specified message or messages are “unsuppressed”. E.g., if “-0201” is used to
suppress message #201, “-O+201” will re-enable it. Note that an unsuppressed
message will be shown only if its analysis category and level were selected.

Summary:
-O arg
/SUPPRESS=arg Action
n Suppress message #n
all Suppress all messages
+n Unsuppress message #n
+all Unsuppress all messages
Example:

“-Qall,+279,+281” or “/SUPPRESS=(all,+279,+281)” (under VMS) will suppress
all messages but #279 and #281. Since messages #279 and #281 are interface FYIs,
the options “-gf” or “/GLOBAL /FYI” must also be selected in order for these
messages to be produced.

Cleanscape Software FortranLint User’'s Manual Version 7.x

46 5. Controlling Analysis

5.5 Portability Checking

To check for portability problems (problems that may occur when FORTRAN code is
ported to different systems), use the “-P” option or /PORT (under VMS).

“-P” and /PORT take target-system names as arguments. Target systems are
discussed in section 4.5 (FORTRAN 77 extensions) and section 4.6 (Fortran 90
extensions). System names include ANSI, ANSI90, CRAY, DECUNIX, DECVMS,
EPC, HPUX, NCUBE, 0S32, SGI, SUN, and VAXULTRIX. Multiple targets may be
specified.

To flag non-ANSI constructs, use “-a” or /ANSI (under VMS). If FortranLint is run
in Fortran 90/95 mode, these options have the same effect as “-Pansi90” and
/PORT=ANSI90. Otherwise, they have the same effect as “-Pansi” and
/PORT=ANSI.

Example:

If FORTRAN code is being ported to both VAX/VMS and CRAY systems, use
“-Pdecvms -Pcray” or “/PORT=(DECVMS,CRAY)” (under VMS) to check for
portability problems related to either target system.

Note that Flint only performs ANSI checks against the F77 or F90 standards; this is
due to creeping featurism in compilers that allow FO3 constructs into versions
supporting F95 or even F90.

5.6 Local Data Flow Analysis

The ability to track local variables in Fortran code and intelligently report any
anomalies in their usage is done with local data flow analysis. Local data flow analysis is
superior to sequential inspection of the source code for identifying problems with

* initialization

* improper sequencing of set/reference instances

« identifying dead or wasteful code.

If “-Fon” (under UNIX) or “/FLOW=0n" (under VMS) is added to the command
line, the source code will be analyzed to glean more information by analyzing down
each of the program'’s control paths. For example, with this option on, Fortran-lint will
inspect both branches of an IF-THEN-ELSE conditional to determine if a variable has
been initialized for both branches, and whether a variable has been set before
referenced in either branch.

Using this option will add processing time to the analysis. The amount of extra time is
determined by the complexity of the source, i.e., nested loops, IF blocks or excessive
use of GOTOs.

Additional capability is added from time-to-time; for a complete list of dataflow
analysis options, try the - Fhel p option on the command line.

Cleanscape Software FortranLint User's Manual Version 7.x

6. Analysis Output 47

6

Analysis Output

6.1 Overview

By default, FortranLint sends all text output to the console (stdout or
SYS$OUTPUT under VMS). The output is divided into sections, which are
printed in the following order:

Section Controlled by
Current options N/A
List of source files N/A

Source listing -l
(/LISTING /INCLUDE)

Analysis output -g-u-m-P -a-w-f-O
(/GLOBAL /USAGE /IMPLICIT /PORT/ANSI
/WARNINGS /FYI /SUPPRESS)

Call tree -t -T
(/TREE /TREE=)

Cross-reference tables X -X
(/XREF /XREF=)

Statistics S

(/STATISTICS)

To redirect output , use the standard UNIX redirection operators or FortranLint ’s
“-S”and “-+” options. To redirect output under VMS, use the options
/OUTPUT, /SPLIT, or /SUMMARY.

For additional information on “-S” and /SPLIT, see section 2.3.1 or chapter 3.

For additional information on “-+” and /SUMMARY, see section 2.3.3 or chapter
3.

To modify the output page width or page length, use “-W” and “-Y”” or /WIDTH
and /LPP (under VMS).

Cleanscape Software FortranLint User’'s Manual Version 7.x

48 6. Analysis Output

6.2 Summary Mode

FortranLint provides an optional progress meter. The progress meter is a
stationary counter (displayed on the console) that tracks the progress of analysis
from 0% to 100%.

To display the progress meter, use “-+” or /SUMMARY (under VMS).

By default, these options divert normal flint output to a set of text files.
Specifically, enabling the progress meter also sets the option “-Sflint” or
/SPLIT=flint (under VMS). These options send analysis output to flint.Int,
statistics output to flint.stt, etc. To specify a different base name, add an explicit
“-S” (or /SPLIT) option to the command line.

Note: After analysis is complete, FortranLint erases the progress meter and
displays a summary of the messages produced.

For additional information, see sections 2.3.1 and 2.3.3.

6.3 Output Details

6.3.1 Options and Filenames

The first line of the analysis output shows the FortranLint revision number and
the current date and time. The next few lines show the selected options, along
with where they were specified.

Default options are options that were specified in the flint.cfg
configuration file in the installation directory. These are the system
defaults.

User options are options that were specified in a flint.cfg configuration
file in the directory named in the environment variable FLINTCFG.
These are a user's custom defaults.

Local options are options that were specified in a flint.cfg configuration
file in the local directory. These are usually the defaults for a specific
project.

Expanded options are options that were specified in a configuration file
expanded onto the command line with the “-E” or /FILES option.

Command options are options that were placed on the command line.

The selected source file names are shown next, grouped by directory. A source
listing follows (if requested), along with diagnostic messages.

Cleanscape Software FortranLint User's Manual Version 7.x

6. Analysis Output 49

6.3.2 Source Listing

To produce a source listing, use the “-I” (dash ell) option or /LISTING (under
VMS).

By default, the listing does not expand include files. To expand include files, use
the “-i” option or /INCLUDE (under VMS).

6.3.3 Diagnostic M essages

FortranLint generates a diagnostic message for each problem detected within a
subprogram/program unit. Each message includes the source line and a pointer
to the column where the problem appears. Also shown are the name of the
source file, the subprogram/program unit name, the line number, the message
category and severity, the message number, and the message text.

A typical message looks like this:

> CALL DI PSTAT (4, CURITEM
> N

deno. f: PRINTIT
line 43: | NTERFACE ERROR #59- constant is changed by subprogram

Messages are generally printed in the order they appear in the source file, and are
grouped by subprogram/program unit. Each message group starts with a header
consisting of a row of “*” characters followed by subprogram/program unit
information. The header looks like this:

RR Rk Ik b b Sk b b b b b R Rk Sk Sk b kb Ik bk b b R R Rk Ik Ik Ik Ik kb kb b Sk I R SRRk Ik kI

Subroutine PRI NTIT File deno.f Li ne 39

Additional diagnostic messages may be printed after a subprogram/program unit
is completely processed or after all subprograms are processed. For example:

| MPLICI T- synbols were inplicitly typed: A AQDATA, DELTI
USAGE ERROR- | ocal variables referenced but never set: J, K

SYNTAX FYIl - unused | abel s: 150

6.4 Statistics Output

To generate statistical reports, use the “-s” option or /STATISTICS (under
VMS). Statistical reports include program size, comment density, and diagnostic
messages summarized by number, category, and severity.

Program size statistics appear first. The number of source files is shown, followed

by the number of lines and bytes of code for the source files, the include files, and
the total of the two:

Cleanscape Software FortranLint User’'s Manual Version 7.x

50

6. Analysis Output

Nurmmber of source files: 1

Source files: 52 lines, 1314 bytes (5% conments, 95% code)
Include files: 44 1i nes, 1052 bytes (14% comments, 86%
code)

Total parsed: 96 |ines, 2366 bytes (9% comrents, 91% code)

Counts on “Include files” reflect all appearances of the include files and will be
much higher than that of the include files alone. “Total parsed” is calculated after
all include files are expanded.

Byte counts do not include newline characters.

Comment percentage is based on byte counts and takes both comment lines and
inline comments into account. The comment percentage for include files and total
parsed is calculated after all include files are expanded. This multiplies the weight
of an include file comment by how many times it is included.

A breakdown of subprograms/program units follows:

Tot al subprograns: 7
Subr out i nes: 6
Functi ons: 0
Program 1
Bl ock Dat a: 0
Modul es: 0

Shown next is a breakdown of the messages produced. Messages are sorted by
frequency of appearance. Displayed for each message are its category, severity,
number, frequency, and message text. Context-dependent fields in the message
text are shown as asterisks (“*”).

I ndi vi dual nessage sumary

| NTRFC ERR #57- 2x: too many argunents.

| NTRFC WARN #63- 2x: expression is changed by subprogram
SYNTAX WARN #47- 1x: branch into do | oop via |abel *.

| NTRFC ERR #56- 1x: not enough argunents.

I NTRFC ERR #59- 1x: constant is changed by subprogram

I NTRFC ERR #95- 1x: this name is defined as a subroutine.

The number of messages is displayed last, shown both in total and by category and
severity. The code <supp>, meaning “suppressed”, is shown for message
categories and severities that were not selected.

Total nessages: 18

Errors VWar ni ngs FYl's
Synt ax: 0 1 0
I nterface: 8 4 0
Dat a usage: 2 1 2
Implicit typing: <supp>

Cleanscape Software FortranLint User's Manual Version 7.x

6. Analysis Output 51

6.5 Exit Status

FortranLint return status output is as follows:

On VMS systems:

0x18000001: No errors/warnings/FYls;

0x18000003: FYl s produced;

0x18000000: War ni ngs (and FYIs) produced;

0x18000002: Errors (and warni ng/ FYls) produced;

0x18000004: Fatal errors caused FortranLint to
terni nate before conpletion.

On UNIX;, Linux, and Windows systems:

No errors/warnings/FYls;

FYl s produced;

Warni ngs (and FYIs) produced;

Errors (and warni ng/ FYls) produced,

Fatal errors caused FortranLint to term nate before
conpl eti on.

bR O

Note that that , return status 0, 1, or 2 indicates that FortranLint did not detect any
errors with the specified options. If “~-Mnoexit” is used, FortranLint will return 0
(only), unless errors are detected.

Cleanscape Software FortranLint User’'s Manual Version 7.x

52 6. Analysis Output

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 53

v

Call Trees

7.1 Overview

“Call trees” are diagrams which outline the calling structure used by the FORTRAN
input source files. To generate call trees, use the “-t” option or /TREE (under VMS).

A typical call tree (using the default format) looks like this:

FORTRAN- | i nt (call tree)
This is a primary tree starting at the program ' PROCDAT'

PROCDAT- +- GETUNI T
|+- READNANE
+- SETTYPE- - PRI NT- - PRI NT| T- +- DI PSTAT- - * PRI NT*
I |+ GETUNI T
|+- PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*

|
+ GETUNI T

7.2 Tree Options

To modify the call tree format, use the “-T” option or /TREE (under VMS). These
switches take one or more sub-options as arguments, specified as follows:

-Toptionl,option2,0ption2, ...
or
ITREE=(option1,option2,option2, ...) under VMS

For a list of sub-options, see the next section.

Cleanscape Software FortranLint User’'s Manual Version 7.x

54

7.2.1 Arguments

8. Cross Reference

“-T” and /TREE accept the following sub-options:

{no}alphabetic

{no}condensed

disable

enable

graphics=xx:xx: ...

nographics

head:symbol

help

{no}library

{no}squish

Cleanscape Software

Calls are normally listed using the order in which they occur.
This sub-option sorts call trees alphabetically. The condensed
option is recommended, in this mode.

Condenses multiple calls to the same routine. If a routine calls
the same routine many times, these calls are merged into one
call. (For older versions of FortranLint, this is the default
mode.)

Disables call-tree output. This sub-option has the same effect
as “--t” or /NOTREE (under VMS).

Enables call-tree output. This sub-option has the same effect
as “-t” or /TREE (under VMS).

Changes the tree graphics characters. The values given are the
hex codes for the following shapes:

(1) (2) (3) (4) (9

The values are two-digit hex codes separated by colons. For
example, if the IBM extended character set is available, the
following values may be used:

graphics=C4:B3:C2:C3:C0
Restores the default graphics characters.

Suppresses the full call tree and shows a call tree with the
specified symbol as the top node. Multiple top nodes may be
specified.

Outputs a help screen describing tree sub-options and
terminates FortranLint .

Shows calls made to routines defined in library template (.Ibt)
files. For additional information, see chapter 9.

Compresses call trees vertically by removing excess line graphics.
The resulting trees are less readable, but require only half the
space.

FortranLint User's Manual Version 7.x

8. Cross Reference 55

{no}trim Trims the call tree by suppressing repeated subtrees. This is the
default mode of operation. notrim may be used to disable
trimming.

Note: “notrim” may produce call trees that require a large
amount of disk space.

{no}undefined Shows calls made to routines that are undefined in the source
code or libraries.

7.3 Call Tree Format

The call tree displays routines, subroutine calls, and function references in a graphical
format. The starting routine is shown at the left top of the graph, and each level of
routine calls is shown to the right of the calling routine. Each routine is connected to
its called routines by lines drawn from dashes, vertical bars, and plus signs. Within
each routine, calls are shown in the order they appear in the source code.

Routines that are not the program routine and are not called by any other routine are
considered “detached”. They will not appear in the main tree, but will be shown as the
head of their own detached trees.

Symbol Explanation

(name) Parentheses are used to flag undefined routine name

(n) Parentheses around a number n identify a trimmed subtree

{name} Braces are used to mark library routine name (from “.Ibt” libraries)

[name] Square brackets are used to mark Fortran 90 internal subprogram name
@name Precedes calls to dummy routine name

* name * Marks recursive chains that are chopped after the first iteration of name

7.3.1Trimmed Trees

The size of call trees grows exponentially with program size. It's therefore impractical to
generate complete call trees for large programs. As an alternative, FortranLint supports
"trimmed" call trees.

In "trim" mode, FortranLint removes (or trims) duplicate subtrees. This brings tree size
down to a reasonable level. At each "trim" point, FortranLint prints a subtree number
that indicates where a master copy of the associated subtree can be found.

To enable "trim" mode, use the option switch “-Ttrim” or /TREE=TRIM (under

VMS). The configuration file provided with FortranLint includes this option; FortranLint
therefore uses "trim™ mode by default.

Cleanscape Software FortranLint User’'s Manual Version 7.x

56 8. Cross Reference

Example: This is a "trimmed" tree (produced by flint -Ttrim):

PROCDAT- +- GETUNI T

|
+- READNAVE

|
+- SETTYPE- - PRI NT (1) - - PRI NTI T- +- DI PSTAT- - * PRI NT*
| |
+- GETUNI T
|

+- PRI NT see 1

This is an "untrimmed” version of the same tree (produced by flint -Tnotrim):

PROCDAT- +- GETUNI T

|
+- READNAVE

|
+- SETTYPE- - PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*

| |

| + GETUNI T
|
+- PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*

|
+ GETUNI T

7.3.2 Condensing Multiple Calls

By default, call trees show all of the calls made inside a given program. If one routine
calls another several times, every call is displayed. As an alternative, FortranLint
supports a "condensed™” mode which shows the relationship between routines instead
of the exact calling sequences used. To produce "condensed" trees, use the option
“-Tcondensed” or /TREE=CONDENSED (under VMS). This option merges
multiple calls from one routine to another into a single association.

Example: This is a “condensed" tree (produced by flint -Ttrim,condensed):

PROCDAT- +- GETUNI T

|
+- READNAVE

|
+- SETTYPE- +- PRI NT (1) -- PRI NTI T- +- DI PSTAT- - * PRI NT*

| |
| + GETUNI T

|
+- READNAVE

|
|
|
|
+- PRI NT see 1

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 57

This is an "uncondensed" version of the same tree (same flint command, omitting the
condensed option):

PROCDAT- +- GETUNI T

|
+- READNAVE

I
+- SETTYPE- +- PRINT (1)-+-PRINTIT (2)-+- Dl PSTAT- - * PRI NT*

I I I
| + GETUNI T

|
+-PRINTIT see 2

I
I I

I I

I I

I I

I +-
I

+- READNAME

|
+- PRI NT see 1

|
+ GETUNI T

7.3.3 Sorting Alphabetically

Calls are normally shown in order of appearance. To sort calls alphabetically (by
routine name), use “-Talphabetical,condensed” or “/TREE=ALPHA-
BETICAL,CONDENSED” (under VMS).

Example:

PROCDAT- +- GETUNI T

I
+- PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*

| |

| +- GETUNI T

|

+- READNANE

|

+- SETTYPE- - PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*
|
+- GETUNI T

7.3.4 Squished Trees

By default, FortranLint produces call trees that are double-spaced vertically. This
improves readability. To produce single-spaced trees, use the option “-Tsquish” or
/TREE=SQUISH (under VMS).

Note: Single-spaced trees are more compact. However, due to limitations of the ASCII

character set, they are also harder to read. If an extended ASCII character set with line-
drawing characters is available, the graphics option should be used in conjunction with
squish. For additional information, see section 7.3.5.

Cleanscape Software FortranLint User’'s Manual Version 7.x

58 8. Cross Reference

Example: This is a "squished" tree
(produced by flint -Tnotrim,squish,graphics= c4:b3:c2:¢c3:c0):

PROCDAT—|T—GETUNIT

—READNAME

—SETTY PE—PRIN‘I‘—PRINTIT—[DIPSTAT— *PRINT *
GETUNIT

—PRINT—PRINTIT DIPSTAT—*PRINT¥*

GETUNIT
This is an "unsquished™ version of the same tree (same flint command, omitting the squish
and graphics options):

PROCDAT- +- GETUNI T

|
+- READNAVE

|

+- SETTYPE- - PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*
| |

| + GETUNI T

|
+- PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*

|
+ GETUNI T

7.3.5 Graphic Character Set

By default, the call tree uses the ASCII characters “-”, “|”, and “+” to connect the
routine names. To specify alternate characters, use:

-Tgraphics=xx:XX:XX:XX:XX
or
ITREE=(GRAPHICS=XX:XX:XX:XX:XX) under VMS

where xx entries are ASCII character codes expressed as two-digit hexadecimal values.
The five entries are interpreted as follows:

(a) 1stcode: horizontal connector
(b) 2nd code: vertical connector
(c) 3rd code: T intersection

(d) 4th code: “|]-" intersection

(e) 5th code: L intersection

For example, if the IBM extended character set is available, use c4:b3:c2:¢c3:c0. Below
is a ""squished" tree
(produced by flint -Tnotrim,squish,graphics= c4:b3:c2:c3:c0):

PROCDAT——GETUNI T
READNAME
SETTYPE—PRI NT—PRI NTI T—EDI PSTAT—* PRI NT*
GETUNI T
PRI NT—PRI NTI T—EDI PSTAT—* PRI NT*
GETUNI T

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 59

The default values are 2d:7c:2b:2b:2b; see Section 7.2.1. To restore the default values,
use “~-Tnographics” (UNIX) or / TREE=NOGRAPHICS (VMS).

7.4 Call Tree Content

7.4.1 Top Node

Call trees can be generated with any routine as the top routine. When the top routine
is selected, the full tree and detached trees are suppressed.

To generate a tree starting at the routine name, use the option switch “-Thead:name” or
/TREE=HEAD:name (under VMS).

To display multiple trees, specify multiple routine names. For example:

-Thead:PRINT ,head:SETTYPE
or
/TREE=(HEAD:PRINT,HEAD:SETTYPE) under VMS

will show trees for both “PRINT” and “SETTYPE”:

This is a primary tree starting at the program' PRI NT'
PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*

|
+ GETUNI T

This is a primary tree starting at the program' SETTYPE
SETTYPE- - PRI NT- - PRI NTI T- +- DI PSTAT- - * PRI NT*

|
+- GETUNI T

To cancel a previously specified “-Thead” (or /TREE=HEAD) switch, add
“-Tnohead” or /TREE=NOHEAD (under VMS) to the command line. This will
restore the full call tree.

7.4.2 Undefined Routines

Call trees normally include all calls, whether or not the called routines are defined in the
current input files. FortranLint uses parentheses to flag undefined routines.

To suppress calls to undefined routines, use “~-Tnoundef” or

/TREE= NOUNDEF (under VMS). If these options are used, call trees will be
restricted to calls between routines defined in the current input files.

To restore the default mode of operation (e.g., if “-~Tnoundef” was set in a configura-
tion file), use “-~Tundefined” or /TREE=UNDEFINED (under VMS).

Cleanscape Software FortranLint User’'s Manual Version 7.x

60 8. Cross Reference

7.4.3 Library Routines

If “library” (.Ibt) files are specified on the command line, call trees will include calls to
the associated library routines. FortranLint uses curly braces ({}) to flag library calls.

Calls to library routines will be displayed whether or not the noundef sub-option is
used (see section 7.4.2). However, calls between library routines are not displayed, in
either case.

To generate call trees which exclude library calls, use “-Tnolib” or /TREE=NOLIB
(under VMS).

To restore the default mode of operation, use “-Tlibrary” or
/TREE= LIBRARY (under VMS).

For additional information on library files, see chapter 9.

7.5 Recursion

FortranLint uses a pair of asterisks to flag recursive calls. For example, see *PRINT*
in section 7.4.1.

7.6 Dummy Routines

FortranLint uses “@” characters to flag indirect calls; i.e., calls to a routine which are
made indirectly through the argument list of another routine.

7.7 Entry Points

The “>* symbol in a call tree indicates that the call was made through an entry point.

For example:

|
+- ENTRPT>SUB1

|
where ENTRPT is the entry point into subroutine or function SUBL.

7.8 Fortran 90 Internal Subprograms

Square brackets ([]) surrounding a routine name indicate that the routine is a Fortran
90 internal subprogram or a module subprogram:

MAI N- +- M
|
+- M_I NNER
|
+- OUTER- - M

|
+- [MAI N_I NNER]

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 61

8

Cross Reference

8.1 Overview

To generate a symbol table cross-reference, use the option “-x” or /XREF (under
VMS). For sample cross-reference output, see Appendix D or E.

Cross-reference tables can be generated from source files or from database files (see
chapter 10).

The option switches “-X” and /XREF may be used to specify sub-options that control
the format and content of the cross-reference table.

The UNIX cross-reference format/content sub-options are:

-Xfreeform Free-form cross-reference

-X{noltabular Selects tabular format (vs. freeform)
-X{no}equiv Selects equivalence usage information
-X{no}line Line resolution (vs. subprogram resolution)
-X{no}legend Selects legend for line resolution codes

The VMS cross-reference format/content sub-options are:

IXREF=freeform Free-form cross-reference
IXREF={no}tabular Tabular format (vs. freeform)
IXREF={no}equiv Selects equivalence usage information
IXREF={no}line Line resolution (vs. subprogram resolution)
IXREF={no}legend Selects legend for line resolution codes

Two cross-reference formats are supported: freeform and tabular.

freeform is the default format. This format uses variable-length lines and shows
information using a compact layout. The default sub-options for this format are
“-Xnoline” and “-Xnolegend” or /XREF=noline and /XREF= nolegend (under
VMS).

The tabular cross-reference format organizes fields into columns. This format is at

least 132 characters wide. The default sub-options for tabular cross-references are “-
Xline” and *“-Xlegend” or /XREF=line and /XREF=Ilegend (under VMS).

Cleanscape Software FortranLint User’'s Manual Version 7.x

62 8. Cross Reference

The line or noline sub-option sets the cross-reference to either line resolution or
subprogram/program unit resolution, respectively. Subprogram/program unit
resolution shows usage of a symbol within a subprogram/program unit, while line
resolution shows usage of a symbol on each line in which that symbol appears. This
must be set during source analysis to have effect.

If the “-g” (or /GLOBAL) option is used, the cross-reference will include additional
information. Specifically, dummy argument usage is shown for subroutine and
function definitions. In addition, the usage of the variables and arrays that are passed
as actual arguments are determined.

8.2 Layout

Symbols are grouped into the following categories:

Programs

Block data subprograms/program units
Subroutines

Functions

Modules (F90 only)

Common blocks

Structures

Records

Variables and arrays

Parameters

Symbols are sorted alphabetically by name within each group.

If a symbol appears in more than one context (e.g., as a variable in one subprogram
/program unit and as a subroutine name in another), the symbol is shown in both
groups.

In the tabular format cross reference, the program, block data, module (F90 only),
subroutine, and function sections are combined, as are the records and variable/array
sections.

The information shown for each symbol will vary by category.

8.2.1 Program Routines

This symbol name is derived from the program name given on a program statement. If

an unnamed program routine exists, it is given the name “Program”. Multiple unnamed

programs are named “Program2, Program3, ..., etc.”. The filename and the line number
where the program routine begins are shown along with the program name.

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 63

8.2.2 Block Data Routines

These are the symbol names from block data statements. Like program symbols,
unnamed block data subprograms/program units are named “Blockdata”,
“Blockdata2”, etc.

The filename and the line number where the block data subprogram/program unit
begins are shown along with the block data name.

8.2.3 Subroutines and Functions

External procedures, internal procedures (F90 only), module procedures (F90 only),
intrinsic procedures, and statement functions are shown in this section and are labeled
correspondingly.

For functions, the data type is shown. This is normally the data type of the function
definition. If the function is undefined, the data type used by the first function call is
used.

An internal subprogram (F90 only) has its parent routine as a qualifier using a double
colon (::), for example, SUB::SUB_INNER.

If the code for the subroutine or function appeared in the sources analyzed, the filename
and line number of the subroutine/function statement are shown. If the definition was
in a FortranLint library (.1bt) file, the name of the library is shown.

Argument descriptions of external, internal, and statement functions are also shown if
the “-g” or /GLOBAL option was used during analysis. The argument descriptions
show the class, data type, and usage of each argument. Argument class is one of the

following:
<blank> variable
array variable or record array
subprogram function or subroutine
return alternate return

unused argument

Argument usage is indicated by the single-letter codes listed below:

Code Description
S set
R referenced (used)
X undetermined

For external and internal subroutines and functions, called routines are shown. If the
table is in tabular format, the line number of each call is shown.

Finally, all calls to the function, subroutine or F90 module are listed. In the tabular
cross-reference, the locations of the calls are shown by subprogram/program unit,
filename, and line number in the References columns.

Cleanscape Software FortranLint User’'s Manual Version 7.x

64 8. Cross Reference

8.2.4 M odules (F90 only)
These are the symbol names from module statements.

The filename and the line number where the module subprogram/program unit begins
are shown along with the module name.

Modules referenced by this module are shown. If the table is in tabular format, the line
number of each module reference is shown in the Calls column.

Finally, all references to the module via USE association are listed. In the tabular
cross-reference, the locations of the calls are shown by subprogram/program unit,
filename, and line number in the References column.

8.2.5 Common Blocks

Common blocks are shown along with their size (in bytes) and a list of their members.
The routines that the common blocks appear in are shown, categorized into the
following groups:

model First instance of the common block. FLINT checks

subsequent occurrences of the common block against
this instance.

same Matches the model.

names differ Member types and sizes match the model, but they
have different names.

layout differs ~ Member types and/or sizes don't match the model.
8.2.6 Structures and Structure Components

The cross-reference lists all structures used by the program, including their size, format,
and members. Structures of the same name, size, and format are merged.

If the linenumbers or tabular format is selected, the cross-reference also includes a
section labeled “Structure components” which lists occurrences of structure
components. For additional information on the linenumbers and tabular formats,
see section 8.3.

8.2.7 Variables, Arrays, and Records

Variables, arrays, and records are shown in this section. This includes automatic
(local), dummy, common block members, and F90 module entities.

Arrays are distinguished by the dimension list. Each dimension is shown as either an
upper bound or a lower/upper bound pair separated by a colon. If the lower or upper
bounds are adjustable, “adj” appears. For open-ended dimensions, an asterisk (*)
appears as the upper bound.

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 65

The Type column shows the data type including a length specifier for symbols or the
name of the associated structure for records.

The Kind column shows the kind parameter of the symbol, if specified.

The Attributes column shows the attributes of each symbol. Attributes include local,
pointer, pointer based, and common block members. Common block members
are shown with the name and byte offset of the common block to which they belong.

The References column shows the cross-reference information for each symbol. The
location resolution is either per subprogram/program unit or per line, depending on
the setting of the “-Xlinenumbers” or /XREF=Ilinenumbers option when the
sources are analyzed. Subprogram/program unit resolution will show usage within each
subprogram/program unit and is described in words. Line resolution will show usage
for each line the symbol appears on, and its usage is described in single-letter codes.

Symbol usage is described as one or more of the following:

Line Subprogram

codes codes Description

Unused Symbol was not referenced, set, or indeterminate

A Actual arg Symbol passed as an actual argument

B Array bound Symbol was used as an adjustable bound for an array

C Associated Pointer has been associated with a target

D Symbol appeared in a declaration (type decl, dim, common)
E Equivalenced Appeared in an equivalence statement

F SF Dummy arg Appeared as a statement function dummy argument

G Ref as Label An assigned goto jumped to label assigned to this symbol
I Indirect Init A symbol Equivalenced to this symbol was initialized

I Initialized Initialized in data statement, or when given data type

L Set to Label Symbol was assigned a label

M Allocated Symbol was allocated

N Nullified Symbol was nullified

(0] Optl dummy arg Symbol appeared as an optional dummy argument

P Dummy arg Symbol appeared in a subroutine or function statement

R Ref Symbol was referenced (its value was used)

S Set Symbol was assigned a value

X Indeterminate May be ref or set, but exact usage cannot be determined
z Deallocated Symbol was deallocated

Usage information (Ref/Set) is carried through all variable associations, including
actual/dummy argument, common block member, and equivalence associations.

The default is to suppress unused common blocks. For additional information, see
section 8.4.

Cleanscape Software FortranLint User’'s Manual Version 7.x

66

8. Cross Reference

8.2.8 Parameters

Parameters are shown along with their data type and their value. Parameters from
different routines that have the same name and the same value will be merged.

The following usage codes apply to parameters:

Line Subprogram

codes codes Description
D Symbol appeared in a declaration (type decl, parameter)
R Ref Symbol was referenced (its value was used)
S Set Symbol was assigned a value (parameter statement)

The default is to suppress unreferenced parameters. For additional information, see
section 8.4.

8.2.9 Equivalences

Entries for variables include equivalence information. For non-common block mem-
bers, equivalences are named variables in the same scoping unit or the parent scoping
unit. For common-block members, equivalences belong to the same common block.

Note: When a variable is equivalenced to an array element, FortranLint recognizes
only the array name as equivalence. Consequently, when two variables that are not
common block members are equivalenced to different elements of the same array,
FortranLint will show the two variables and the array as the equivalence of one
another. In case of two different scalar members of the same common block that are
equivalenced to different array elements of the same array, FortranLint will show the
array as the equivalence of both scalar members.

8.2.10 High Performance Fortran (HPF)

If HPF checking is enabled, and if the linenumbers or tabular format is selected, the
cross-reference includes a section that displays occurrences of HPF processors and
templates.

For additional information on HPF, see section 4.9. For additional information on the
linenumbers and tabular formats, see section 8.3.

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 67

8.3 Format Sdlection

FortranLint allows users to select different formats for the cross-reference table by
using the “-X” option (UNIX) or /XREF (VMS). Available formats include:

-Xfreeform IXREF=freeform
-X{no}tabular IXREF={no}tabular
-X{no}equiv IXREF={no}equiv
-X{no}linenumbers /XREF={no}linenumbers
-X{no}legend IXREF={no}legend

freeform / tabular

“-Xtabular” or /XREF=tabular (VMS) selects a table style that uses fixed-width
columns. The output is 132 or more columns wide. The default line numbering
mode for this format is “-Xlinenumbers” or /XREF=linenumbers (VMS).

“-Xfreeform” or /XREF=freeform (VMS) selects a more compact style with
fields separated by single spaces. The default line numbering mode for this format
is “-Xnolinenum” or /XREF=nolinenum (VMS).

equiv / noequiv

By default, the cross-reference entry for a given variable includes usage informa-
tion for the associated equivalences, whether or not the variable is used directly.
To suppress equivalence info, use “-Xnoequiv” or /XREF=noequiv (VMS).

linenumbers / nolinenum

To produce cross-reference tables with line numbers, use “-Xlinenumbers” or
/XREF=linenumbers (VMS).

To limit cross-reference tables to the subprogram/program unit level, use
“-Xnolinenum” or /XREF=nolinenum (VMS).

Note: To be effective, linenumbers or nolinenum must be specified after
“-Xtabular”, “-Xfreeform”, /XREF=tabular, or /XREF=freeform on the
command line.

legend / nolegend

If linenumbers is selected, FortranLint prints single-character usage codes along
with line numbers. A legend describing these usage codes is printed at the end.

To suppress the legend, use “-Xnolegend” or /XREF=nolegend (VMS).

To restore the legend (if it has been disabled), use “-Xlegend” or
/XREF=legend (VMS).

Note: To be effective, legend or nolegend must be specified after “-Xtabular”,
“-Xfreeform”, /XREF=tabular, or /XREF=freeform on the command line.

Cleanscape Software FortranLint User’'s Manual Version 7.x

68 8. Cross Reference

8.4 Content Selection

NOTE: As of 6.0, the separator between sentence fragments is now “." instead of * .
The ‘" character is used in numerous intrinsic symbol names.

“-X” and /XREF both accept content selection arguments.

Content selection arguments are sentence fragments composed of one to six words,
separated by periods or single dots. Each sentence fragment describes a criterion that
can be used to select, add to, or filter cross-reference output.

A complete content selection includes the following words as its arguments:

-X{conjunction}{.usage}{.scope}.classH{.named.xxx}

IXREF={conjunction}{.usage}{.scope}{.class}{.named.xxx} under VMS

Conjunctions Usage (Adjective) Scope (Adjective) Class (Noun)
only used/unused local routines
and ref/lunref dummy/nondummy programs
no set/unset statement/nonstatement subroutines
called/uncalled intrinsic/nonintrinsic functions
indeterm/determ global blockdata
actual/notactual common/noncommon modules
init/uninit external/nonexternal extern
decl/undecl internal/noninternal blocks
equiv/unequiv structures
variables
scalars
arrays
records
parameters

Note: The default conjunction is “only”.

While any of the words composing the criteria sentence are optional, the order of the
words is significant. All words may be abbreviated, as long as they remain unambig-
uous. A few examples are:

Example Result

-Xno.unused.variables Suppress unused variables
-Xand.par.named.+00 Also show parameters with names ending in “00”
-Xonly.ref.dum.var.nam.i Show referenced dummy variables named “i"
/XREF=common.arrays Show arrays in common blocks

/IXREF=arr.named.a?b+c Show arrays named {any-letter}b{zero-or-more-letters}ca

(1) The conjunction, if specified, must be first. This word specifies whether the
criteria sentence is a selection, filter, or addition. The default mode of operation
is “ONLY”.

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 69

Word Type Description

ONLY selection suppress everything but the following (default)
NO filter suppress the following

AND addition add the following to what is already selected

(will not be subject to previous filter criteria)

The usage adjective, if specified, must be next. This word acts on symbols at the
subprogram/program unit level.

If a symbol is used in a particular subprogram/program unit in the fashion
described by the usage adjective, the use of that symbol within the sub-
program/program unit is included in the selection. If the usage adjective is
omitted, FortranLint disregards usage when determining the selection.

Word Antonym Description

used unused Referenced, set, called, or indeterminate
referenced unreferenced

set unset

called uncalled

indeterminate determinate

actualarg notactualarg Variables passed to external routines
initialized uninitialized

declared undeclared Data type, dimensions, or common
equivalenced unequivalenced

Filtering acts on references at a subprogram/program unit level, filtering out the
references to a symbol that match the filter criteria. If all references to a symbol
are filtered out, the symbol itself is suppressed.

The scope adjective, if specified, must be next.
This is used in a similar fashion to the usage adjective but relates to the scope of

the symbol. If the scope adjective is omitted, scope is not used in determining
the selection.

Word Antonym Description

local Dummy, Statement, Intrinsic, or Automatic
dummy nondummy Dummy argument

statement nonstatement Statement function

intrinsic nonintrinsic Intrinsic function

global Common or External

common noncommon Common block or common block member
external nonexternal External routine

Cleanscape Software FortranLint User’'s Manual Version 7.x

70

8. Cross Reference

(4) The class noun, if specified, must be next. This specifies the class of the symbol.
The class noun describes categories of symbols. If the class noun is omitted, the
selection contains all categories of symbols limited by the usage and scope
adjectives.

Class Subclasses Description
routines Includes programs, subroutines, etc.
programs
subroutines Includes dummy subroutines
functions Includes statement, dummy, and intrinsic functions
blockdata
external External routines which are undefined and unused
blocks Common blocks
structures ---
variables Includes scalars, arrays, and records
scalars Single-valued variables
arrays
records Structured records
parameters --- Defined in parameter statement
(5) The symbol name is specified last.
This is composed of two words, the word “named” followed by the actual symbol
name. The following wildcards are allowed:
matches zero or more characters
? matches one character
Wildcards may be combined.
Example:
-Xnamed.ab*f?h
or

IXREF=named.ab*f?h under VMS

The default content of the cross-reference table is everything except unused common
variables and unreferenced parameters.

UNIX examples:

-Xno.intrinsic Suppress intrinsic functions
-Xuncalled.routines Only routines that have not been called
-Xand.unused.parameters Show unused parameters, too

-Xno.unused.common.variables Don’t show declarations of common variables
where they are unused (if a symbol is
never used, its name does not appear)

Cleanscape Software FortranLint User's Manual Version 7.x

8. Cross Reference 71

VMS examples:
IXREF=routines Only show routine names
/XREF=no.common Suppress common blocks and common
block members
/IXREF=unset.functions Show only undefined functions

/IXREF=unused.dummy.arrays Show array dummy arguments that are unused

Multiple phrases may be given; these are checked in order from left to right. The
phrases may be either on the same option or on separate options.

UNIX example:
-Xset.variables -Xno.unref.common.arrays -Xand.init.common.var

This will show set variables that are not unreferenced array common block members
and any common block members that are initialized.

VMS example:
IXREF=routines,and.common.blocks
This will show routines and common blocks.

As mentioned previously, the default conjunction is “only”. The following
combination will produce unexpected results:

-Xused.variables -Xequivalenced.variables
or
/IXREF=used.variables /XREF=equivalenced.variables under VMS

If the intent is to produce a cross-reference table with only variables that are used or
equivalenced, the above command line option will not work. The second argument
(equivalenced.variables) will override the first argument (used.variables), since the default
conjunction is “only”. The cross-reference table produced by this option will only
include equivalenced variables. To perform the desired operation, use:

-Xused.variables -Xand.equivalenced.variables
or

/IXREF=used.variables /XREF=and.equivalenced.variables under VMS
Because Flint generates a cross reference (symbol table) with all symbols used
throughout the program, a useful filter is to suppress local variables possibly being used
as loop counters (e.g.,i, j). To perform the desired operation, use:

-Xno.local.variables.named.?

Cleanscape Software FortranLint User’'s Manual Version 7.x

9. Library Support 73

9

Library Support

9.1 Overview

FortranLint supports a feature similar to ‘C’ prototypes. Specifically, the user can create
“library shell” files for use in subsequent analysis operations.

NOTE: As of Flint version 6, the text-based .Ish files are preferred to the .Ibt binary
files. Section 9.3 is therefore deprecated.

A library shell (or .Ish) file is a text file that describes the interface structure of a library
or package. .Ish files contain data structures similar to ‘C’ prototypes, but with
additional information; specifically, reference/set flags and argument options.

Flint uses .Ish files to check calls to external libraries or packages. .Ish files allow Flint
to perform interface checks even when library source code is unavailable. Reference/
set flags allow the user to describe individual routines more completely than traditional
prototypes, improving the accuracy of generated reports. Argument-level options allow
the user to “fine tune” interface checking for individual routines.

The Flint package includes several .Ish files, located in SFLINTHOME. As of version
7, these are:

- unixlib.Ish ~ Stubs for unix system routines

- vmslib.Ish Stubs for VMS system routines

- openmp.Ish Stubs for OpenMP support routines

- leeea.lsh Stubs and definitions for IEEE Arithmetic

- ieeee.lsh Stubs and definitions for IEEE Exceptions

- ieeef.Ish Stubs and definitions for IEEE Features

- isobind.Ish Stubs and definitions for ISO_C_BINDING

- isoenv.Ilsh Stubs and definitions for ISO_FORTRAN_ENV

- MPl.Ish Stubs for MP1 subroutines and functions

- NetCDF.Ish Stubs for NetCDF subroutines and functions (F77 interface)

To use an .Ish file, simply add it to the project file list. If external routines are called,
Flint will search the .Ish file for applicable definitions.

Note: Flint searches unixlib.Ish automatically for external routines, unless the routines
are found in user-specified .Ish files. Under VMS, Flint searches vmslib.Ish instead.
Also, the IEEE* and iso* .Ish files are included automatically when such module usage
is detected.

For additional information about the search process, see section 9.4.

Cleanscape Software FortranLint User’'s Manual Version 7.x

74 9. Library Support

9.2 Writing Library Shell Files

Library shell files are simply text files containing Fortran subroutine or function stubs.

The FortranLint package includes two sample library shell files unixlib.Ish and
vmslib.Ish. These files can be used to rebuild unixlib.lbt and vmslib.Ibt, respectively
(see section 9.3). They can also be used as the starting point for new library shell files.

Follow these guidelines:
(@) Use the filename extension .Ish.

(b) Write one or more Fortran subroutine or function stubs. The stubs should be
named after corresponding library routines or system calls.

(c) Each stub should take the same arguments as the original routine, and should
declare the arguments using the appropriate types.

(d) Function stubs should have the same return type as the original functions.

(e) Dummy arguments may be flagged with switches to provide additional
information. (For additional information, see the following text.)

Example: This sample stub provides FortranLint with a description of the standard
UNIX exit routine (treated as a subroutine):

subroutine exit (status)
i nt eger status
end

This stub provides FortranLint with a description of the standard UNIX library routine
getcwd:

i nt eger function getcwd (dirnane)
character*(*) dirname
end

As previously noted, arguments may be flagged with switches to provide additional
information. For example:

subroutine exit (status/r)
i nt eger status
end

i nteger function getcwd (dirnane/s)
character*(*) dirname
end

The /r switch used here asserts that exit references the “status” argument. The /s

switch used here asserts that getcwd sets the dirname argument. FortranLint takes
this information into account when checking calls to these routines.

Cleanscape Software FortranLint User's Manual Version 7.x

9. Library Support 75

The following argument switches are supported:

/s
/r
/i

Asserts that the flagged argument is set.
Asserts that the argument is referenced.
Asserts that the argument’s reference/set status is indeterminate.

These first three are the most common switches used. Example:

subroutine nodtab (a/r, bl/s, c/i)
real a, b, c
end

This stub asserts that “modtab” references its first argument and sets its second
argument. The status of the third argument is indeterminate.

/1

/0

/q

Cleanscape Software

(Lower-case ell.) Asserts that the rest of the argument list (starting with the
flagged argument) is option. For example:

i nteger function grade (nane,classl/I,class2, cl ass3)
character*40 nane

i nteger classl, class2,class3

end

This stub asserts that the function “grade” takes one required argument
(name), followed by zero to three optional arguments (classl, class2, and
class3).

Asserts that the flagged argument is optional. For example:

subroutine foo (a, b/o, c/o, d/o, e)
integer a, b, ¢, d, e
end

This stub asserts that the middle three arguments to “foo” are optional.

Suppresses data-type checking and/or error #251 (scalar passed to array).
Typically, this switch is used to flag arguments that can be represented in
different ways.

For example, assume that a subroutine named “bar” takes a “quadword” (64
bit) argument, and assume that “bar” doesn't care if the caller passes a two-
element array of integer*4 or a four-element array of integer*2. In this case,
the following stub could be used:

subroutine bar (x/q)

i nteger*2 x(4)
end

FortranLint User's Manual Version 7.x

76

/v

/z

9. Library Support

Asserts that the flagged argument is passed by value. For example:
subroutine foo (n/v)
i nteger n
end
If this stub is used, FortranLint assumes that “foo” can be called as follows:
call foo(%val (3))
Suppresses all interface checking for the flagged argument. For example:
i nteger function foo (a, b/z)
integer a, b

end

If this stub is used, FortranLint checks the first argument for every call to
“foo”, but does no checking at all on the second argument.

To combine two or more argument switches, use a single slash, followed by the
appropriate letters. For example, foo/or asserts that the argument foo is optional, and
that it is referenced.

Note: The /s, /r and/or /i switches cannot be combined for a given argument.

Cleanscape Software

FortranLint User's Manual Version 7.x

9. Library Support 77

9.4 Library Precedence

When analyzing calls to functions or subroutines, FortranLint uses the following
definitions (highest precedence first):

(a) Definitions found in the user's Fortran source files

(b) Definitions found in the intrinsic table associated with the selected target
compiler

(c) Definitions found in user-specified .Ish files

(d) Definitions found in unixlib.Ish or vmslib.Ish (under VMS)
By default, the intrinsic table takes precedence over user-specified .Ish files. To search
user-specified .Ish files before the intrinsic table, specify the option “~-Muselbt” or
/MISC=uselbt (under VMS). If this option is used, (b) and (c) are reversed in the
preceding list.
Note: The default system library templates unixlib.Ibt and vmslib.Ibt have the lowest

precedence, whether or not the uselbt option is specified.

9.5 Miscellaneous Library Issues

9.5.1 Interaction with Cross Reference and Call Trees
Cross-reference tables and call trees automatically include referenced library routines.

Cross-reference tables print library names along with routine names. Call trees use
curly braces ({}) to flag library routines.

9.5.2 File Format

“.Ibt” files are revision-locked. If incompatible “.Ibt” files are used, FortranLint will
print a warning message.

Cleanscape Software FortranLint User’'s Manual Version 7.x

78 9. Library Support

Cleanscape Software FortranLint User's Manual Version 7.x

10. Database Files 79

10

VVVVVVVVVVVVVVVVVV VYV VYV VYV VVVVVVVVVVVV
N\ N \NN\NN\NNNNNNNNNNN NN\ NN\ NN\ N NN\ N NN NN\ NN\ N N

Database Files

10.1 Overview

FortranLint can be used to create database (or “.fdb”) files for use in subsequent
analysis operations.

A database (or “.fdb”) file is a binary file that contains symbolic information
obtained from one or more FORTRAN source files.

Files with the extension “.fdb” are database files generated by FortranLint during
source code analysis. “.fdb” database files contain symbolic information for the
modules processed.

“.fdb” files may be used to re-generate cross-reference tables, call trees, diagnostic
messages, etc., without re-analysis of the original source code.

As of rev. 4.33B, “.fdb” files may also be used as libraries. In other words, “.fdb”
files can be used instead of “.Ibt” files on the command line. For additional
information, see section 10.4.

10.2 Creating Database Files

To create database files, use the “-B” option or /DATABASE (under VMS) as
follows:

flint -Bdbfile fool.f foo2.f foo3.f ...
or
flint /IDATABASE=dbfile fool.for foo2.for foo3.for ...
under VMS

dbfile specifies the base name that should be used for the database. The filename
extension *“.fdb” will be added automatically.

If the specified database file already exists, it will be overwritten.
To suppress console error messages during database creation, add the option

switch “-Oall” or /SUPPRESS=ALL (under VMS) to the FortranLint command
line.

Cleanscape Software FortranLint User’s Manual Version 7.x

80 10. Database Files

10.3 Using Database Files

To extract information from an existing database file, use a normal flint command
with the database file as an argument. For example:

flint -t dbfile.fdb
or
flint /TREE dbfile.fdb under VMS

The command line should not specify any other database files or FORTRAN
source files.

All call tree options are available when database files are processed. Most of the
cross-reference options are available; line is an exception. “-Xline” and
/XREF=line are ignored; flint uses the line value set when the database file was
generated.

Additionally, if “unreferenced parameters” or “unused common block members”
are not selected when the database file is created, the associated messages will not
be provided by subsequent database queries.

“.fdb” files should be regenerated whenever the associated source code is
modified.

10.4 Using FDB filesaslibraries.

For FLINT rev. 4.33B or later, “.fdb” files can be used as libraries. In other words,
you can specify “.fdb” files instead of *“.Ibt” files on the command line.

There is one special case: If the file list starts with an “.fdb” file, FLINT runs in
"database™ mode, and all other file arguments are ignored. For more information
about "database™ mode, see section 10.3.

Two option switches may be used to control the way “.fdb” libraries are used:

1. —Mlibcom. By default, FLINT doesn’t check source-level common blocks
against common blocks declared inside “.fdb” libraries. 1f "-Mlibcom™ is used,
FLINT checks source-level commons against all “.fdb” files specified on the
command line. "-Mlibcom™ also suppresses not-referenced/not-set messages
for commons in the user's code, which are referenced or set at the *“.fdb” level.

2. —Mlibext. By default, FLINT searches all specified “.fdb” files for missing
procedures. If "-Mlibext" is used, searching is suppressed; unresolved
procedures are treated as external, whether or not they are defined inside
“.fdb” files.

Restriction:

FLINT does not yet support translation of “library shell” (.Ish) files to “.fdb”
format. (For information on .Ish files, see chapter 9.)

Cleanscape Software FortranLint User’'s Manual Version 7.x

11. Xlint Introduction 81

11

Xlint Introduction

NOTE: Xlint has been deprecated on most hosts and is not available under
Windows. A GUI interface is provided for most host platforms. See the
flintguide.pdf manual in the ‘doc’ subdirectory for more information.

Therefore, Windows users can skip Chapters 11-16.

Xlint is a Motif-based programming tool. It is designed to provide FORTRAN
developers with an interactive graphical user interface that can be used to browse
FORTRAN source files.

Xlint operates on the database (or “.fdb”) files generated by FortranLint. With
four windows displaying information, Xlint allows the developer to step through
potential errors and to see the relationships between source code, call tree and
symbol table information, all on one screen.

Symbol cross-reference information can be automatically brought up, showing all
code references to any symbol in the analyzed program. Each occurrence of a
symbol can quickly be found in the source code; at the same time, the appropriate
node is highlighted in the displayed call tree.

Cleanscape Software FortranLint User’s Manual Version 7.x

82 11. Xlint Introduction

Cleanscape Software FortranLint User’'s Manual Version 7.x

12. Learning About Xlint 83

12

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV VYV VYV VYV VYV YV VYV Y VYV
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV VYV VYV VYV VY VYV YV

Learning About Xlint

This chapter will cover the basics that users need to know before running Xlint and will
help them understand the usage and function of the many options available within this
product.

12.1 Screen L ayout

The Xlint screen is made up of four windows and a control panel. See Figure 12-1.

The four windows from top to bottom are Source, Lint, Tree, and Cross Reference.
They are used to display specific information relating to the current database being
analyzed. When information in any of the windows exceeds the size of the window, a
scroll bar will appear on the bottom and/or right hand side. Each window can be
enlarged or reduced at the expense or benefit of the other windows.

The Control Panel bar between the Source and Lint windows contains a text input
field and three buttons.

Popup menus are supported by all four windows and can be called up by a click of the
right mouse button, with the pointer anywhere in the appropriate window. Options in
the popup menus can be selected by simply holding down the right button, dragging
the pointer to the desired option, and then releasing the button. When the button is
released, the option will be set and the menu will disappear.

On-screen help is available. A help menu can be called up by a click of the left mouse
button on the help option at the top of the Xlint screen.

Cleanscape Software FortranLint User’'s Manual Version 7.x

84 12. Learning About Xlint

= .7 P I

Source

Control
Panel

Lint Info

Call Tree

Cross
Reference

Fig. 12-1: Xlint window (on startup)

Cleanscape Software FortranLint User’'s Manual Version 7.x

12. Learning About Xlint 85

12.2 File Menu

The File menu is used to select the database or source file.

A submenu with five options can be brought up by a click of the left mouse button.

Load Database Used to load a pre-existing database. A database must be
loaded before symbol information can be displayed in the
windows.

View File Used to load an arbitrary file into the Source window. It will

stay loaded until an action from another window calls up a
different source file.

Save File Used to save any edits made to the file in the Source window.
Editing must be enabled first.

Enable Editing Allows the file in the Source window to be modified and saved.
Changes are only saved when the Save File menu item is
selected. When the Source window is in the editing mode, the
Disable Editing option replaces Enable Editing in the
submenu and disallows any editing in the Source window.

Quit Exits Xlint.

12.3 Search M enu

The Search menu allows text searches on the Source window, using the currently
highlighted text as the search string.

Previous Searches backwards for the selected text.
Next Searches forwards for the selected text.
Go To Line Uses the selected text as the line number and goes to that line.

For example, if the highlighted text is the number “27”, then if
line 27 exists, the program cursor moves to the 27th line.

Cleanscape Software FortranLint User’'s Manual Version 7.x

86 12. Learning About Xlint

12.4 Build Menu

The Build menu is used to create or update a database (.fdb) file.
The status field on the control bar shows the status of the most recent rebuild.

Configure Used to select the name of the database, the source files, and
options used during source processing.

Rebuild Runs FortranLint with the configured options and files to
regenerate the database file.

Kill Rebuild Process Stops the source processing; available only during rebuild.

Use Rebuilt Database Loads the database that was last rebuilt by the Rebuild menu
selection. This has the same effect as loading the database
from within the File menu.

View Build Output Pops up a window that shows the output from Fortran-Lint

during the rebuild process. The FortranLint output can be
used to determine why a “build” operation failed.

12.5 Source Window

The source code currently being analyzed is displayed in this window.

Action in other windows will cause files to load automatically and jump to the
appropriate point in the source. A lookup can be performed on highlighted items that
can affect the Tree and Cross Reference windows.

The popup menu can be used to select the source related to what is currently
highlighted in the other windows. With these options, users can step through the
cross-reference entries one by one or repeat a text search with a click of the mouse.

Previous Xref Goes to the text referred by the cross-reference entry one
before the current highlight in the Cross Reference window.

Current Xref Goes to the text referred by the cross-reference entry currently
highlighted in the Cross Reference window.

Next Xref Goes to the text referred by the cross-reference entry one after
the current highlight in the Cross Reference window.

Previous Text Goes to the previous occurrence of the text currently
highlighted in the Source window.

Next Text Goes to the next occurrence of the text currently highlighted in
the Source window.

Cleanscape Software FortranLint User's Manual Version 7.x

12. Learning About Xlint 87

Lint Goes to the text referred by the lint message currently
highlighted in the Lint window.

Note: If the Lint window is currently in the “summary” mode,
the cursor in the Source window will not be affected.

Tree Goes to the function or subroutine currently highlighted in the
Tree window.

12.6 Lint Window

The current FortranLint analysis messages pre-generated by FortranLint are displayed
in this window.

When a database is initially loaded, a summary of the FortranLint source analysis is
shown. Double-clicking an item in the summary calls up the actual instances of that
message. Double-clicking a message instance causes lookups in the other windows
specified for action in Lint's popup menu.

Summary Shows a summary of FortranLint analysis output.

Example:
IMPLCT #125 7x: symbols were implicitly typed as *: *

where 7x means that there are 7 instances of such message.

All Messages Shows all the actual message instances of the FortranLint
source analysis. Each message includes the line number, the
subroutine it belongs to, the message number, and the message
itself.

Example:
demo.f(33)[PRINT] #125: symbols were implicitly typed as 1*4: IUNIT

Action The Action popup menu determines which of the other
windows are influenced by actions taken in the Lint window.

If a message is double-clicked in the Lint window, depending
on the selections in the Action popup menu, one or more of the
other windows is changed to reflect the new selection. The
Tree window will change to reflect the routine where the
message was reported. The Cross Reference window will change
to reflect symbol information associated with the message. By
default, both Cross Reference and Tree are selected.

Cleanscape Software FortranLint User’'s Manual Version 7.x

88 12. Learning About Xlint

12.7 Tree Window

This window contains a graphical representation of the program’s “call”” structure,
centered around a given routine.

Each node of the call tree represents a routine. The selected routine is placed in the
center. The routines to the left and right are the predecessors and descendants of the
selected routine, respectively.

Clicking a node will highlight it and make it selectable from the popup menus of the
other windows. Double-clicking a node will re-center the tree around that node.
Double-clicking a node while holding the Shift key (<Shift>double-click) will cause
lookups in the other windows specified for action in the Tree's popup menu.

The popup menu in the Tree window allows the tree root to be set from the current
routine in the Source, Lint, or Cross Reference window.

Selected Routine Uses the currently highlighted routine name from the Source
window or the text input field.

Routine Containing Lint Redisplays the Tree window with a tree centered around the
routine containing the current lint message.

Routine Containing Xref Redisplays the Tree window with a tree centered around the
routine containing the current Cross Reference entry.

Action Selects the affected windows when a shift double-click is

done on a tree routine. By default, the Source and Lint
windows will reflect the change on the Tree window.

12.8 Cross Refer ence Window

The Cross Reference window contains a cross-reference for the selected symbol.
Symbols may be selected by name and may contain wildcard characters. The cross-
reference entries are filtered by the settings in the Xref Filter selection box in the
Control Panel (see next section).

The following wildcard characters are accepted:

* zero or more characters
? any character

Double-clicking a cross reference entry calls up the source and/or call tree related to
that entry, depending on the action settings.

Cleanscape Software FortranLint User's Manual Version 7.x

12. Learning About Xlint 89

Options available in the popup menu are as follows.

Lookup Selected Symbol

Looks up the symbol currently highlighted in the source
window.

Lookup Tree Routine

Lint References

Action

12.9 Control Pand

Allows users to look up the cross-reference messages related to
the routine currently highlighted in the Tree window.

Shows cross-reference information regarding the lint message
highlighted in the Lint window.

Determines the affected windows when a double-click is done
on a cross-reference entry.

The control panel bar between the Source and Lint windows has four labels that will
perform various functions. A description of each option follows:

Select

Lookup

Xref Filter

Tree

Cleanscape Software

Allows the user to type in a symbol in the field next to the
Select option for lookup.

To perform the lookup, the user can either hit return at the end
of the text or click on the Lookup button.

Uses the highlighted text from the Source window to affect the
windows selected for action by the Source window's popup
menu.

If no text is highlighted, the text specified in the Select field to
the left will be used. If text is entered into this Select field and
<Return> is pressed, the entered text is used regardless of what
is highlighted in the Source window.

Calls up a selection box to select the types of symbols to show
in the Cross Reference window. Any number of qualifiers may
be selected.

Brings up a selection box to set the “parent” and “child” depths

of the call tree to be displayed in the Tree window, as well as
condensing multiple calls.

FortranLint User's Manual Version 7.x

90

12. Learning About Xlint

Parent depth is the number of levels shown upward in the call
stack in relation to the selected tree routine. Child depth is
similar, but in a downward direction. The toggle for Condense
mode causes multiple calls from one routine to another to be
shown as one link, rather than duplicated. Library includes the
library routines defined in “.Ibt” files. Undefined shows all
routines which are called, whether or not they are defined in the
current input files.

12.10 M ouse Functions

The functions of the mouse are consistent with standard Motif usage.

Left button

Middle button

Right button

Cleanscape Software

Used to select menu options and buttons; can also be used to
highlight or mark text in the Source window. Highlighting is
accomplished by pointing to the beginning of the text the user
wishes to mark and, while holding the left button down,
dragging to the end of the text and then releasing the left
button.

Used to paste highlighted text at the current cursor location or
text prompt. Pasting or inserting cannot be done into the
Source window.

Used to call up the popup menus and select the options in these
menus.

FortranLint User's Manual Version 7.x

13. Database Files and Xlint 91

13

Database Files and Xlint

13.1 Overview

As explained in chapter 10, database (or “.fdb”) files are binary files that contain
symbolic information for one or more FORTRAN source files.

Xlint uses the information stored in “.fdb” files to browse the associated source
files and/or analysis output.

Database files may be created from the command line (using FortranLint), or they
may be generated inside Xlint. For the command-line procedure, see section 10.2.
Section 13.3 covers the Xlint procedure.

Note: This chapter assumes that the environment variable (or VMS logical)
XLINTPATH is set properly. If Xlint is being run from a directory other than

the directory that contains project sources, XLINTPATH should point to the
directory that contains the sources.

13.2 Loading Database Files

Before Xlint can be used, a database (“.fdb”) file must be loaded. To load a
database file inside Xlint, proceed as follows:

1) Select the File menu from the options at the top of the screen.

2) Select Load Database from the File menu. This will bring up a directory
and file selection screen.

3) Select the appropriate directory. To select the desired “.fdb” file,
double-click the file or click the file to highlight it and then click OK.

The “lint” summary for the specified “.fdb” file should appear in the Lint window.

Alternatively, a database file may be specified on the Xlint command line. For
additional information, see section 15.3.

Cleanscape Software FortranLint User’s Manual Version 7.x

92 13. Database Files and Xlint

13.3 Rebuilding Database Files under Xlint

The Build menu on top of the Source window can be used to rebuild an existing
database (or to create a new one). The “build” procedure is as follows:

1) Select Configure on the Build menu. Enter the database name (without the
“ fdb” extension) in the Database field. Enter the associated source file
names in the Source Files field. Set the other options as desired. See figure
13-1.

2) Select Rebuild on the Build menu. The Status field in the Control Panel
may be used to monitor “build” status.

3) When the Status field shows “Rebuilding completed”, the new database may
be loaded. (To do this, select Use Rebuilt Database on the Build menu.)

Users may also see the FortranLint output by using the View Build Output on
the Build menu. If the “build” failed, View Build Output can be used to
determine the cause. (For additional information, see section 12.4.)

:
=
=
=
-
=
r
-
=
=
=
=
-

Fig. 13-1: Xlint Build-Configuration window

Cleanscape Software FortranLint User's Manual Version 7.x

14. Xlint: Getting Started 93

14

Xlint: Getting Started

14.1 Configuration Setup

For installation instructions, see Appendix H or I.

In particular, note that a “resource file” should be copied to the appropriate
directory. (For additional information on resource files, see the installation
instructions and chapter 16.)

Also note that three UNIX environment variables (or VMS logicals) should be set
for each Xlint user:

XLINTHOME Path for the directory that contains the Xlint
support files.

XLINTHOST Network name (or node name) for the system
running the Xlint license manager.

XLINTPATH Path for the directory that contains the user's
FORTRAN source files.

14.2 Running Xlint

Before Xlint can be used, the user must create a project database (or *“.fdb” file).
For additional information, see chapters 10 and 13.

To run the browser, enter the command xlint;
xlint
The Xlint menu will appear, along with four empty windows.

Next, use Load Database on the File sub-menu to load the appropriate database.
(For additional information, see section 13.2.)

Cleanscape Software FortranLint User’s Manual Version 7.x

94 14. Xlint: Getting Started

After the “.fdb” file is loaded, source-analysis output will appear in the Lint
window.

To display all lint messages, scroll through the lint message summary. To display
all occurrences of a given message, double-click the message. The Lint window
will be updated appropriately.

For detailed information on a given occurrence, double-click the occurrence.
Xlint will display related source code, call tree output, and cross-reference
information.

For on-screen help, click the left mouse button on the Help field in the upper
right corner of the Xlint screen.

To load another database, select Load Database on the File menu.

To exit Xlint, select Quit on the File menu.

14.3 Sample Sessions

The FortranLint / Xlint package includes sample FORTRAN 77 and Fortran 90
project files.

The sample FORTRAN 77 files include demo.for (an F77 source file) and
demo.fdb (the associated database file). demo.for may be used to rebuild
demo.fdb; for additional information, see section 13.2.
Similarly, the sample Fortran 90 files include demo90.for (an F90 source file) and
demo90.fdb (the associated database file). demo90.for may be used to rebuild
demo90.fdb.
Session 1
1) Under the FortranLint / Xlint installation directory, run:

xlint demo.fdb

This will bring up the Xlint menu and analysis output for demao.fdb.

2) To find all symbols starting with “I””, enter “1*” in the Select field on the
Control Panel and press <Return>.

This will bring up cross-reference information for all variables beginning
with the letter “I”.

3) To bring up information related to a specific symbol, double-click the
appropriate line in the Cross Reference window. For example, to display
information related to the variable “INUIT”, double-click the following line:

INUT,I*4 variable,in deno.f(43)[PRINTIT] is Set, Actual arg

Cleanscape Software FortranLint User’'s Manual Version 7.x

14. Xlint: Getting Started 95

The Source window should display demo.for with line 43 (containing
INUIT) highlighted. The Tree window should display a tree centered around
the PRINTIT routine. The screen should appear similar to that shown in
Figure 14-1.

4) Double-click another cross-reference entry. For example:
I, 1*4 variable, in denp.f(6)[PROCDAT] is Ref

Note the changes in the Source and Tree windows.

Session 2:

1) Run:
xlint

This will bring up the Xlint menu with four empty windows.

2) Click on File in the upper left corner of the screen. Select Load Database
to bring up the Load Database dialog box. Use the Directories and Filter
options to go to the FortranLint / Xlint installation directory. Double-click
demo.fdb to select it or single-click to highlight demo.fdb and press OK.
Xlint should display analysis output for “demo.for” in the Lint window.

3) Todisplay all the occurrences of a particular lint message, double-click the
message with the left mouse button.

For example, double-click the following message:
| MPLCT #125 7x: synbols were inplicitly typed as *: *

to display all occurrences of IMPLCT #125. Note that 7x means that there
are 7 instances of this message.

4) After all instances are displayed, double-clicking one of the instances will
display information related to the instance.

For example, double-click the following instance:

deno. f (33) [PRI NT] #125: synbols were inplicitly typed as |*4:
[UNIT

The Source window should display source code with the highlight on ITUNIT
in line 33. The Tree window should display a call tree centered around the
PRINT routine. In the Cross Reference window, the following line should
be highlighted:

IUNIT, 1*4 variable, in deno.f(33)[PRINT] is Dunmy arg

Cleanscape Software FortranLint User’s Manual Version 7.x

96 14. Xlint: Getting Started

5) Double-click a lint instance that is not currently highlighted. For example:

denp. f (49) [DI PSTAT] #125: synbols were inplicitly typed as
R*4: PRI NT

The Source window now redisplays the source file with the highlight on
“PRINT” in line 49. The Tree window shows a tree centered around
DIPSTAT. The Cross Reference window shows the following information:

PRI NT, subroutine, in denp.f(49)[DI PSTAT] is called

6) To see the lint summary again, use the right mouse button to select Summary
in the Lint window.

INCLUDE ‘demo.ina’
IF (CURITEM.TYPE .NE. COUNT) CALL PRINTIT(IUNIT, CURITEM)
END
C ’PRINTIT”
SUBROUTINE PRINTIT{ IUNIT, CURITEM)
INCLUDE ‘demo.ina’
IF (IUNIT .EQ. INUZE) THEN
STATUS = 2
CALL DIPSTAT(4, CURITEM)
CALL GETUNIT(3)

SYMTAX FYI #701 12x: deprecated feature: uze derived types instead,

IMPLCT #120 Tx: symbols were implicitly typed az %3 *

SYNTAX FYI #276 2x: data type conversion: (% = %),

SYHTAX WARN #47 1x: branch into do loop wia label #,

INTRFC ERR #G5E 1x: not enough arguments,

INTRFC ERR #&7 1x: too many arguments,

INTRFC ERR #59 1x? constant iz changed by subprogram,

INTRFC WARM #B3 : expreszion is changed by subprogram,

IMTRFC ERR #395 1 thiz name is defined as a subroutine,

INTRFC WARN #122 + common block /% organization differs at member # {compared to initial use in routine #3,

I, 1*4 variable, in dermo.f(5)[PROCDAT] is Ref, Set
I, 1*4 wartable, in dero.f(B)[PROCDAT] is Ref
U ariah INTIT]is
INUSE, I*2 variable, member of IBLCCKY, in demo.inc

NPROCDAT] is Declared
IMUISE, I*2 variahle, member of IBLOCKY, in dema.inc{10{PROCDAT] iz Declared
il

IMUISE, I*2 variahle, member of (BLOCKY, in dema.inc{10{SETTYPE] iz Declared
IMUISE, I*2 variahle, member of \BLOCK!, in demo.inc(3[PRINT] iz Declared

{
{
INUSE, I*2 variable, member of IBLOCKY, in dema.inc(3)[SETTYPE] is Declared
{
{
INUSE, I*2 variahle, member of IBLOCKY, in demo.inc{10[PRINT] iz Declared

Fig. 14-1: Xlint Window for Sample Sessions 1 and 2

Cleanscape Software FortranLint User's Manual Version 7.x

15. More About Xlint 97

15

More About Xlint

15.1 Resizing Windows

Any of the Source, Lint, Tree, or Cross Reference windows in the Xlint screen can be
enlarged or reduced at the expense or benefit of the other windows. To resize a
window, press the left or middle mouse button on the small box between two
windows, and drag it to the new boundary line users desire. Then release the button.

When the information in any of the windows exceeds the size of the window, a scroll
bar will appear on the bottom and/or right hand side of the window.

15.2 Window Interaction

Window interaction is controlled by the Action sub-menu in each of the Lint, Tree,
and Cross Reference windows. The settings in these Action menus determine how
changes in that particular window will affect the other windows. Depending on the
action settings, all the windows may be updated to reflect information relative to the
changed window.

To view or change the action settings for a particular window, move the mouse cursor
to any location within that window and press the right mouse button. The popup
menu for that window will now be displayed. Move the mouse to the Action option
and press the right button again. The action options will now be displayed. To toggle
an option on or off, simply point to that option box, and press the right mouse button.

The default settings for window interaction are set so that an action in any window will
affect the others. For example, if the user double-clicks a cross-reference entry, the
corresponding source code and the tree information will appear in the Source and Tree
windows.

15.3 Command-Line Options

Xlint supports the standard “X” command-line options (i.e., -bg, -fg, -display, etc...).
For additional information on these options, see the system vendor’s “X”
documentation.

Cleanscape Software FortranLint User’'s Manual Version 7.x

98 15. More About Xlint

Additionally, a database (*.fdb”) file may be specified on the command line. For
example:

xlint foo.fdb
To specify an alternate resource file (e.g., bar.dat), use an option of the following form:
xlint -rf bar.dat

This option loads both the default resource file and the user-specified file. Options in
the user-specified file take precedence.

15.4 Advanced Example

The following session will use “demo.fdb” as the example. A screenshot of the sample
session is shown in Figure 15-1.

Sample session 3:

1) Inthe FortranLint / Xlint installation directory, run:
xlint demo.fdb

This will bring up an Xlint screen with analysis output for the “demo” project in
the Lint window.

2) Click the left mouse button to bring up the File menu. Select the View File
command. Select “demo.for” (or “demo.f”). The Source window should display
FORTRAN source code for the “demo” project.

3) Symbols can be located throughout the loaded source file by highlighting the text
of a symbol in the Source window, clicking the right mouse button to bring up
the popup menu, and selecting Next Text. For instance, highlight “PRINT” in
line 9 in the Source window.

To search for the next “PRINT” in “demo.for”, click the right mouse button
anywhere in the Source window to call up the popup menu. Select Next Text.

The next “PRINT” highlighted in the Source window is in the SETTYPE
subroutine.

4) To see all occurrences of “PRINT”, use the right mouse button in the Cross
Reference window to call up the submenu. Choose Lookup Selected Symbol.

5) To make a cross-reference entry available as a selection for the Source and/or
Tree windows, highlight the entry using a click of the left mouse button. For
example:

PRINT, subroutine, in demo.f(33)[PRINT] is defined

Cleanscape Software FortranLint User’'s Manual Version 7.x

15. More About Xlint 99

6) To see the tree related to this highlighted cross-reference entry, use the right mouse
button to select the Routine Containing Xref in the Tree's popup menu.

The Tree window shows a call tree centered around the PRINT routine.

7) To see where in the source code the highlighted “PRINT” in the Cross Reference
window refers to, use the right mouse button to select “Current Xref” in the
Source window.

The highlight in the Source window now moves to the symbol “PRINT” in line
33.

Note that the combined result of steps 5-7 can be done by simply double-clicking
the cross-reference entry in step 5.

8) <Shift> double-click the SETTYPE routine in the Tree window. The Source
window moves the highlight to “SETTYPE” in line 27. The Cross Reference
window shows all the cross-reference information about SETTYPE.

Users can change the setting for any window at any time. For example, the depth of

the parent or child tree in the Tree window can be changed by using the Tree Option
in the Control Panel. The tree will be redisplayed with the new depth.

Cleanscape Software FortranLint User’'s Manual Version 7.x

100 15. More About Xlint

*) NAME, DIMS

C *SETTYPE’
SUBROUTINE SETTYPE(CURITEM)
INCLUDE ‘demo.inc’
CURITEM. TYPE = CURITEM.DIMENSIONS(2)
IF (CURITEM.TY¥PE .GT. 5) CALL PRINT({ CURITEM)
END

C *PRINT*
SUBROUTINE EEJEUM(CURITEM, IUNIT)

#7701 12xy deprecated feature: uze derived types instead,
#120 Tx: symbols were implicitly typed az %3 *

#27E 2x: data type conversion: (% = %),

#47 1x: branch into do loop wia label #,

#0E5 1x: not enough arguments,

constant iz changed by subprogram,

expreszion iz changed by subprogram,

this name is defined as a subroutine,

common block %/ organization differs at member # {(compared to initial uze in routine *),

PRIMT, subrouting, in dema fISPROCDAT] iz called

FRIMT, subrouting, in dema f{300[SET TYPE] iz called
) fe T1i

PRINT, subrouting, in demo f49)[DIPSTAT] iz called

Fig. 15-1: Xlint Window for Sample Session 3

Cleanscape Software FortranLint User's Manual Version 7.x

16. Xlint Resource Files 101

16

Xlint Resource Files

16.1 Overview

A resource file is an ASCII text file that contains the configuration information
needed for Xlint to run. Xlint resource files conform to the standard X Window
resource file conventions.

The default resource file is named Xlint or XLINT.DAT (under VMS). Itis
strongly suggested that the original copy of this resource file not be altered. If
users need to modify the default configuration, they should create modified copies.

Users may load modified versions of the resource file in various ways; for
additional information, see section 16.2.

16.2 Xlint and XLINT.DAT
The Xlint resource file is named Xlint or XLINT.DAT (under VMS).

A copy of this file should be placed in the home directory for each Xlint user. By
default, Xlint uses this copy. Users may specify alternate versions on the Xlint
command line; for additional information, see section 15.3.

Alternatively, , users may set the standard environment variable XAPPLRESDIR
or use the standard app-defaults directory.

Under VMS, two logicals DECW$SYSTEM_DEFAULTS and DECWS$USER _
DEFAULTS are used. To install a copy of XLINT.DAT for system-wide use,
place it in the directory specified by DECW$SYSTEM_DEFAULTS. To install
a copy of XLINT.DAT for use by an individual user, place it in the directory
specified by DECW$USER_DEFAULTS for that user.

If Xlint finds copies of the resource file in two or more places, all of the specified
options are used, but options in individual user resource files take precedence over
options in system-wide resource files.

If a resource file is specified on the Xlint command line, options in the specified
file take precedence. For additional information, see section 15.3.

Cleanscape Software FortranLint User’s Manual Version 7.x

103

Appendices

Cleanscape Software FortranLint User’'s Manual Version 7.x

Cleanscape Software FortranLint User’'s Manual Version 7.x

Appendix A. Installation 105

Appendix A

Installation Windows, Unix/Linux

A.0 Windows I nstallation — GUI only

1. Installation.

(@) Execute flintgui <ver>_wi n. exe. Note: You can run this program from
any drive or directory. Note that there is no command-line-only installer, but
Flint can be run from the command line with appropriate settings.

An installer window should appear. Click the Install button. This should
extract a number of files. After all files are extracted, click Exit.

As of Flint version 6, the installer will configure your machine with the demo
version of Flint. The demo version requires no key and is thus suitable for
evaluation customers. It is fully functional, as can be evidenced by reviewing
the summary listing it provides. However, only a limited number of detailed
messages, pinpointing the error to the line of code in the source, are provided.

To bypass demo installation, click No when the dialog box appears. Note that
a key will be required! To change at any time, simply copy flintfull.exe to
flint.exe, or flintdemo.exe to flint.exe, depending on which version you want.

The installer creates a shortcut on your Desktop. The shortcut should appear
roughly one second after all files are extracted.

(b) Run FortranLint. To do so, double-click the FortranLint shortcut.

(c) If you install FortranLint under Windows 2000 or later as Administrator, and
you want to make the program accessible to ordinary users, some additional
steps are required. For more information, see flintguide.pdf, located in your
‘doc’ subdirectory).

The GUI version of FortranLint is now installed. Note: A reboot is not required.
To run the program, use the shortcut created by the installer.

To more details, please see section 2.1 of flintguide.pdf.

Cleanscape Software FortranLint User’'s Manual Version 7.x

106 Appendix A. Installation

2. Command-line setup.
If you'd like to use the command-line version of FortranLint, follow the steps
outlined in Part 1, then two additional steps are required. These are done in the
Environment Variables section of System Properties, or may be done in an
existing command session as follows:
(1) Set the environment variable FLINTHOME:

SET FLINTHOME=C:\CLEANSCAPE\FLINT\MAIN
(2) Modify PATH as follows:

PATH %FLINTHOME%;%PATHY%

Note: Under Windows 98, you may need to add double quotes as follows:

PATH "%FLINTHOME%;%PATH%"

If you have questions, contact support@cleanscape.net.

3. License Manager.
If you are a demo user, there is no license management.

You should have received a temporary key good for 30 days (the warranty period);
if not, contact sales@cleanscape.net.

.The Windows version uses the Reprise RLM License Manager. For most users,
you simply copy the keyfile to %L1 NTHOVE% Detailed instructions are provided
in the email with the keyfile, as well as instructions for obtaining a permanent key.

There is practically no license management for single user licenses; floating license
management is described in detail in doc\ readne_fl oati ng. t xt.

4. Documentation.

For more information, see the following two documents:
flintman.pdf Main FortranLint manual (PDF format)
flintguide.pdf ~ Quick guide to FortranLint (PDF format)
flintdemo.pdf Get running quickly with Flint (PDF format)

The installer copies these files to the following directory:
C.\ A eanscape\ FLI NT\ Doc

Cleanscape Software FortranLint User’'s Manual Version 7.x

mailto:support@cleanscape.net
mailto:sales@cleanscape.net

Appendix A. Installation 107

A.l Ingtallation Procedure, Unix/Linux GUI

Download the file f I i nt gui <ver>_<0s>. taz to /tmp. Use the following
commands to extract. NOTE: If you are installing to a system directory, you will
need to have admin privileges. The ‘#’ below represents the root prompt.

gunzip /tnp/flintgui<ver> <0OS>.taz

tar xpvf /tnp/flintgui<ver>_<0S>.tar

For Linux and Mac, a demo version of Flint will be installed. The demo version
requires no key and is thus suitable for evaluation customers. It is fully functional,
as can be evidenced by reviewing the summary listing it provides. However, only a
limited number of detailed messages, pinpointing the error to the line of code in
the source, are provided.

If you have paid for Flint, run the utility ConvertToFull located in your ‘main’
subdirectory.

To also run on the command line, add the environment variables as detailed in the
next section.

To more details, please see section 2.2 of flintguide.pdf, located in your ‘doc’
subdirectory.

A.2 Installation Procedure, Unix/Linux Command Line

NOTE: You do not need both command line and GUI distros if you want to use
both products on your system. The GUI version contains the command line
version and only environment variables need to be set.

0. For command-line-only users, download file f I i nt <ver >_<0S>.taz to/tnp.

1. Log in asadmin. This is not necessary unless you want to install to a system
directory.

2. Run these commands:
gunzip /tnp/flint<ver> <OS>.taz
tar xpvf /tnp/flint<ver> <0S>.tar

3. The commands will extract a number of files in multiple subdirectories,

including:
demo.f demo source files
demo.inc demo include file
demo090.f90 demo90 source files
demo90.inc demo90 include file
flint.1 man page
flint.cfg flint default configuration file
flint.err error message text
flint.hls flint help file
unixlib.Ish standard UNIX library description text
unixlib.lbt standard UNIX library file
vmslib.Ish standard VMS library description text
vmslib.lbt standard VMS library file

Cleanscape Software FortranLint User’'s Manual Version 7.x

108 Appendix A. Installation

The basic executables include:

flint FortranLint executable

iptima license administration program

iptimd license manager daemon

iptimr license usage report generator

elmalert license manager alerts (e.qg., key about to expire)

Multiple versions of flint may be loaded. For example, flint_sun4 is the
executable for SUN 4 systems. The installation procedure will select the
correct version and rename it appropriately.

If the Xlint option was purchased, the following additional files will be

loaded:
demo.fdb database generated from demo.f
demo90.fdb database generated from demo90.f90
xlint Xlint executable
Xlint Xlint resource file

For Linux and Mac, a demo version of Flint will be installed. The demo
version requires no key and is thus suitable for evaluation customers. It is
fully functional, as can be evidenced by reviewing the summary listing it
provides. However, only a limited number of detailed messages, pinpointing
the error to the line of code in the source, are provided.

If you have paid for Flint, run the utility ConvertToFull located in your
‘main’ subdirectory.

4. Modify the user configuration for each FortranLint user as follows:

(a) Set the environment variable FLINTHOST to the host name for the
server where the license manager is installed. (To obtain the host
name, execute the UNIX command hostname on the server.)

(b) Set the environment variable FLINTHOME to a full path for the
directory, which contains the FortranLint support, files (flint.err,
etc.).

For example, if the user is using csh, use commands of the form:

setenv FLINTHOST hostname
setenv FLINTHOME installation_directory

If the user is using sh, use commands of the form:

FLINTHOST=hostname; export FLINTHOST
FLINTHOME=installation_directory; export FLINTHOME

Cleanscape Software FortranLint User’'s Manual Version 7.x

Appendix A. Installation 109

5. Add $SFLINTHOME to the user's search list.
For csh users, use a command of the form:
set path=($path $FLINTHOME)
For sh users, use a command of the form:
PATH=$FLINTHOME:$PATH

To make the changes permanent, add the new commands to the appropriate
login scripts. For example, for csh users, modify “.cshrc”.

6. Optional: The FortranLint package includes a utility program named flpatch
that can be used to patch the FortranLint installation directory and server
host name directly into the flint executable.

To patch the executable, use commands of the form:

flpatch flint host hostname
flpatch flint home installation_directory

For additional information on FLPATCH, see section A.4.

7. Users are now ready to activate FortranLint.

Cleanscape Software FortranLint User's Manual Version 7.x

110 Appendix A. Installation

A .3 Activation Procedur e, Unix/Linux

Every FortranLint license must be assigned a unique authorization number (or
“activation key”) by Cleanscape before the package will run.

1. To proceed, execute the following command:
flint activate
The software will provide users with a server code, and it will prompt them
to call or email Cleanscape for activation. If users have not already received
an activation key, they will need to contact Cleanscape. Cleanscape will then
generate an activation key based on the server code.
2. Once the activation key is acquired, execute the following command:
flint activate

again, and enter the activation code when prompted.

Note: A file called 02 or 07 will be created in the FortranLint installation
directory. This file stores information related to the activation key.

3. The activation procedure in step 2 also creates a script file called startup
under the installation directory. This file will allow users to load the daemon
from the command line. Users will need to run startup every time they
reboot their system or kill the license manager.

After the key file has been successfully installed in the installation directory,
FortranLint will ask users if they want to put a command to start the license
daemon in the system boot file (/etc/rc.local).

If users answer *“yes”, the license manager daemon will be started automatically
whenever the system is booted. To complete the installation procedure, in this
case, simply reboot the system. However, users must have sufficient privileges
to do so.

If users answer “no”, they will need to start the daemon manually if they
reboot the system or kill the daemon.

4. If users have elected not to have the boot file modified, they need to run:
$FLINTHOME/startup

at the next prompt to start the daemon. After being started, the daemon
requires a three-minute period for initialization.

Cleanscape Software FortranLint User’'s Manual Version 7.x

Appendix A. Installation 111

5. Enter the command:
flint

FortranLint should display a “help” screen similar to the following:

FORTRAN- | i nt Rev 7.33 07-Nov-2018 12:55:27

Usage: flint [switches] [filel [file2...]] [file.Ibt] [file.fdb]

Source configuration options: Di agnosti c options:
-d process debug |ines -a ANSI conpatibility
-e 132 col umm source |ines -f report FYls
-1 path include file search path -g gl obal processing
-p preprocess sources (cpp) -m flag inplicit types
-R form source form -Onum onmt selected nessages
-V sys sel ect Fortran dial ect -P sys portability issues
-2 two byte ints & logicals -u data usage checking (dflt)
-7 set | anguage to FORTRAN 77 -w report warni ng (dflt)
-9 set |l anguage to Fortran 90 -F Dat af | ow anal ysi s
-3 set | anguage to Fortran 2003 (-Fhel p for nore info)

-# file preprocessor filename (fully qualified if not in PATH)

CQut put control options: M scel | aneous opti ons:

-1 source |listing -C opts generate Cadre data files
- show i nclude files -D defs #defines for preprocessor
-s statistics -Efile expand file on cnrmd |ine
-Wnum set page width -Mopts mscellaneous options

-Y num set page length (-Melp for nore info)
-Sfile split output to files -L file library generation node
-+ sunmary node (inplies -9S) -q do not wait for Ilicense
-0 'fm' specify output fornmat -B file create database (.fdb)

- X cross reference

-X opts cross reference format/content (-Xhelp for nore info)

-t call tree

-T opts «call tree format/content (-Thel p for nmore info)

Lower case options nay be conbi ned, use double dash to disable (--w).
Uppercase options take paranmeters (W or w o space) and do not conbine.

6. FortranLint is now ready for use.

Note: At this point, Xlint may be installed. For additional information, see
Appendix H.

A.4 Patching FortranLint (Unix/Linux only)

Some of the default parameters in FortranLint can be modified within the
FortranLint executable. This is accomplished using the “flpatch” program. This
program takes the following command-line arguments:

1st: name of the executable (required)
2nd: parameter to patch
3rd: desired value

If the second or third arguments are not given, the user will be prompted for
them.

Cleanscape Software FortranLint User’'s Manual Version 7.x

112 Appendix A. Installation

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix B. Installation Under VMS 113

Appendix B

Installation Under VMS

B.1 Pre-installation

Starting with revision 2.82, FortranLint incorporates a license manager that
requires a detached process to be loaded before the product will run. The daemon
is called iptlm for versions below 2.90, and iptimd for versions 2.90 and above.

Installation can be done by non-privileged users. However, root privileges are
required if the product is to be installed in system directories.

Note: The FortranLint “installation directory” mentioned in the following sections
is the directory that contains the FortranLint support files (for example, flint.err
and flint.cfg).

B.2 Installation Procedure

1.

2.

Log in as system manager.
Create an installation directory. Go to the new directory.

Load the tape (or other media) provided and execute commands of the
following form:

MOUNT /FOR device name

BACKUP /LOG device name:FLINT []

DISMOUNT device_name

where device_name is the VMS device name for the media used (TK-50
cartridge tape, 1600 bpi mag tape, etc.).

Step 3 will load a number of files, including:

DEMO.FOR demo source files

DEMO.INC demo include file

DEMO90.F90 demo90 source files

DEMO90.INC demo90 include file

FLINT.CFG FLINT default configuration file
FLINT.ERR error message text

FLINT.HLP FLINT help file, use with VMS HELP
FLINT.HLS FLINT help file, command line options
VMSLIB.LSH standard VMS library description text
VMSLIB.LBT standard VMS library file
UNIXLIB.LSH standard UNIX library description text
UNIXLIB.LBT standard UNIX library file

Cleanscape Software FortranLint User’'s Manual Version 7.x

114 Appendix B. Installation under VMS

The basic executables include:

DEMO.COM demo script
DEMO90.COM demo90 script
IPTLMA.EXE license administration program
IPTLMD.EXE license manager detached process
IPTLMR.EXE license usage report generator
FLINT.EXE FortranLint executable
FLPATCH.EXE executable patch program
If the Xlint option was purchased, the following additional files will be
loaded:
DEMO.FDB database file for demo.for
DEMO90.FDB database file for demo90.f90
XLINT.DAT Xlint resource file
XLINT.EXE Xlint executable file

5. Modify the user configuration for each FortranLint user as follows:

(a) If the FortranLint license manager is installed on a DECNET server,
set the logical FLINTHOST to the node name for the server.
Otherwise, set FLINTHOST to “NO_DECNET™.

Note: To obtain the node name, execute the command “show logical
SYSSNODE” on the server. Discard any “colon” characters.

define FLINTHOST *“node _name”

(b) Set the logical FLINTHOME to a full path for the FortranLint
installation directory.

define FLINTHOME $disk:[installation_directory]

(c) Define the symbol FLINT as a foreign command to execute
FLINT.EXE (located in the installation directory):

FLINT :== $FLINTHOME:FLINT.EXE

(d) Define the symbol FLPATCH as a foreign command to execute
FLPATCH.EXE (located in the installation directory):

FLPATCH :== $FLINTHOME:FLPATCH.EXE

To make the changes permanent, add the new commands to the appropriate
LOGIN.COM files.

Example:

DEFINE FLINTHOST “GUMBY”

DEFINE FLINTHOME $disk3:[USR.PETER.FLINT]
FLINT ;== $FLINTHOME:FLINT.EXE
FLPATCH :== $FLINTHOME:FLPATCH.EXE

Cleanscape Software FortranLint User’'s Manual Version 7.x

Appendix B. Installation Under VMS 115

6. Optional: The FortranLint package includes a utility program named
FLPATCH.EXE that can be used to patch the host directory path and
server node name directly into the FLINT.EXE executable.

To patch the executable, use commands of the form:

FLPATCH FLINT.EXE HOME $disk:[directory path]
FLPATCH FLINT.EXE HOST *“node_name’

disk:[directory_path] should specify the FortranLint installation directory.
node_name should be the appropriate node name (or “NO_DECNET”), as
explained in step 5.

For additional information on FLPATCH, see section B.4.

7. Users are now ready to activate FortranLint.

B.3 Activation Procedure

Each FortranLint license must be assigned a unique authorization number (or
“activation key”) by Cleanscape before the package will run.

1. To proceed, execute the following command:
flint /license=activate
The software will provide users with a server code, and it will prompt them
to call Cleanscape for activation. If users have not already received an
activation key, they will need to contact Cleanscape. Cleanscape will provide
an activation key based on the server code.

2. After the activation code is obtained, execute the command:

flint /license=activate
again, and enter the activation code when prompted.
Note: A file called 02.lic or 07.lic will be created in the FortranLint
installation directory. This file stores information related to the activation
key.

3. The activation procedure in step 2 also creates a script file called
STARTUP.COM in the installation directory. This file will allow users to
load the daemon from the command file. To start the license daemon,
execute the following command:

@FLINTHOME:startup
Users will need to run @FLINTHOME:STARTUP if they reboot the

system or kill the detached process. Alternatively, add this command to the
appropriate system startup script.

Cleanscape Software FortranLint User’'s Manual Version 7.x

116

Appendix B. Installation under VMS

4. The startup script in step 3 requires a three-minute period for initialization.
When the three minutes are up, enter the command:

flint

FortranLint should display a “help” screen:

FORTRAN-lint Rev 5.0 6- Mar-99 10: 49: 55 Page 1

Source configuration options: Di agnosti c options:

/ DLI NES -- process debug lines / ANSI -- ANSI conpatibility

| EXTEND -- 132 colum source |lines [FYI -- report FYls

| FORMES -- source form / GLOBAL -- gl obal processing

| LANG=c -- sel ect | anguage [IMPLICIT -- flag inplicit types
/NO 4 -- two byte ints & | ogicals /| PORT=sys -- portability issues

| PATH=path -- include file search path / NOUSAGE -- suppress usage checki ng
| SYS=sys -- target conpiler / system / NOWARN -- suppress warni ngs

/ SUPP=n -- suppress nessage #n

Qut put control options: M scel | aneous options:

/LI ST -- source listing / FI LES=f -- filenanme/options file
/ 1 NCLUDE -- show include files / LI B=f -- library generation node
| STAT -- statistics / M SC=opt -- mscel l aneous options
/ W DTH=n -- set page width / M SC=hel p -- for nmore info

/ LPP=n -- set page length / UNI XHELP -- UNI X-style option help
[ouT=f -- redirect output to file -? -- UNI X-style option help
[SPLI T=f -- split output to files

| DATA=f -- create database (.FDB)

| SUMVARY -- summary node (inplies /SPLIT)

| XREF(=c) -- cross reference (/XREF=help for nore info)

| TREE(=c) -- call tree (/TREE=help for nore info)

5. FortranLint is now ready for use.

Note: At this point, Xlint may be installed. For additional information, see
Appendix I.

B.4 Patching FortranLint

Some of the default parameters in FortranLint can be modified within the
FortranLint executable. This is accomplished using the FLPATCH program.
This program takes three command-line arguments:

1st: name of the executable (required)
2nd: parameter to patch
3rd: desired value

If the second or third arguments are not given, the user will be prompted for
them.

The patchable parameters in FortranLint are:

Name Description Default value
home installation directory o
host license server host “NO_DECNET”

To patch FortranLint, use a command of the following form:

FLPATCH flint.exe home $disk2:[appl.FLINT]

Cleanscape Software FortranLint User’'s Manual Version 7.x

Appendix B. Installation Under VMS 117

a) The home parameter sets the default for the application support directory.
home can be overridden by the system logical FLINTHOME.
The default value “!”” for the home parameter indicates that the installation
directory is not specified. Unless the FLINTHOME logical is specified, an

error message will be issued reporting that the product is not yet installed.

b) The host parameter is used by the license manager to locate the machine on
which the license manager detached process is running.

If the license manager is not installed on a DECNET server, this parameter
should be set to “NO_DECNET™.

The host parameter can be overridden by setting the logical FLINTHOST.
For the detached process hostname, there are two special values:

1) a? causes a system-wide search for the detached process.
2) a ! causes an error to be reported unless FLINTHOST is set.

Cleanscape Software FortranLint User’'s Manual Version 7.x

118 Appendix B. Installation under VMS

Cleanscape Software FortranLint User’'s Manual Version 7.x

Appendix C. License Manager 119

Appendix C

License Manager, Unix/Linux/VMS

Starting with version 2.81, FortranLint incorporates a license manager that requires
a daemon to be loaded before the product will run. This daemon is called iptlm
for versions below 2.90 and iptimd for versions 2.90 and above.

Most of the information here is relevant for non-Windows users.

C.1 License Manager Commands

C.1.1 User Commands

1) By default, FortranLint will queue a job when there are no more licenses
available. The “-g” option or “/quit” under VMS when added to the “flint”
command line will force the application to quit when there are no available
licenses.

flint -q [optiong] files
or
flint /quit [optiong] files under VMS
2) FortranLint needs to identify the node on which the license manager was
loaded. To accomplish this, it uses the UNIX environment variable (or VMS
logical) FLINTHOST.
To define FLINTHOST , use commands of the form:
setenv FLINTHOST hostname for csh users
or
FLINTHOST=hostname for sh users
export FLINTHOST

hostname should be the network name of the user's license server host. (To
obtain the host name , execute the command hostname on the server.)

To define FLINTHOST under VMS, use a command of the form:
define FLINTHOST “nodename’

If the license server is installed on a DECNET host, nodename should be the
node name of the host. Otherwise, nodename should be “NO_DECNET”.

Cleanscape Software FortranLint User’'s Manual Version 7.x

120

Appendix C. License Manager

(To obtain the node name under VMS, execute the command “show logical
SYSSNODE” on the server. Discard any “colon” characters.)

Another environment variable (or logical) FLINTHOME tells FortranLint
where the installation directory is located. This variable can be used to
override the directory value patched into the executable during installation.

To define FLINTHOME , use commands of the form:

setenv FLINTHOME directory for csh users
or

FLINTHOME-=directory for sh users

export FLINTHOME

directory should be a full path.
To define FLINTHOME under VMS, use a command of the form:
define FLINTHOME $disk:[installation_directory]
Under VMS, the qualifier /system may be added to the commands in 2) and
3) to place the definitions of FLINTHOST and FLINTHOME in the

system logical table. Note that users need to log in with SYSNAM privileges
to add definitions to the system logical table.

C.1.2 Administrative Commands

Under VMS Description
flint activate flint /license=activate Enter an activation key
flint users flint /license=users Show active users (outstanding licenses)
flint servers not supported List active license daemons
flint report flint /license=report Produce cumulative usage report
flint daily flint /license=daily Produce daily usage report
flint kill flint /license=Kkill Kill license daemon (superuser)

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix C. License Manager 121

C.1.3 License Manager Options (at daemon startup only)

1)

6)

iptimd -e dir:dir:dir... Key file directories (required)
Directories must be full pathnames separated by colons.
iptimd -r file Reserve file
This file allows licenses to be reserved for specific users or machines.
The format of this file is:
product:group:clientl,...,clientn:K
Each group, with the client members, has K licenses for FortranLint .
If users are using UNIX based systems, the group name is unrelated to the
UNIX system group names. It is only the name you wish to call this group
of users.
A client is either a user name or a host name preceded by the at sign (“@”).

Example:

flint:hackers:wendy,jeff,sara,fred:3
flint:lab: @gumby:1

Here Fred is a user name, and @gumby is a host name.
Comment lines begin with “#”.
iptimd -l logfile Log file (needed for usage reports; recommended).

iptimd -m size Maximum log file size. This
limits the size of the log file. When this size is
reached, the log file is copied to file.old and is cleared.
The size is given as a floating number followed by
either “m” for megabytes or “k” for kilobytes.

Examples: -m 100k
-m 0.5m

iptimd -v # Log file verbosity. The default
value is 3. Lower numbers produce less output and
higher numbers produce more output.

iptimd -f Run in foreground. The license manager normally
“backgrounds” itself and exits. This option keeps it in
the foreground.

Cleanscape Software FortranLint User’'s Manual Version 7.x

122 Appendix C. License Manager

C.14 dmalert

el mal ert allows system administrators or users to receive alerts as to license
status, either via email or onscreen. This is particularly useful for admins to be

notified of the license key’s expiration date. It can also notify regular users when a
license becomes available.

Included is a manpage which explains its usage and can be put in a suitable 'man’
directory on your license server. Note there are 32- and 64-bit versions of elmalert.

To see the current status onscreen, type el mal ert 64 -v 07

More advanced features include - x (generate message x days before expiration)
and - m(email default user) as shown in the last example in the manpage.

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix D. Sample Output: Fortran 90 123

Appendix D

Sample Output: Fortran 90

D.1 Sample Fortran 90 Program

MODULE M
TYPE MYTYPE
CHARACTER* 10 NAVE
| NTEGER(KI ND=4) SCORES(2, 2)
END TYPE

REAL, PRI VATE :: LOC(10)

| NTEGER AVE

CHARACTER* 2 GRADE(6)

PARAVETER (GRADE = (/'A', 'B, 'C, 'D, 'E, 'F/))

boeee-- Internal subprograns --------
SUBROUTI NE M_| NNER(TYPEL1, TYPE2)
TYPE (MYTYPE), | NTENT(INOUT) :: TYPEl
TYPE (MYTYPE), | NTENT(IN) oo TYPE2
TYPEIYNAMVE = " ALIAS: ' [/ TYPE2YWNAVE
END SUBROUTI NE M_| NNER

END MODULE

SUBROUTI NE QUTER(TYPE1l, TYPE2, OPDUM
c ----- Declaration -----
USE M ONLY : MYTYPE
TYPE (MYTYPE), | NTENT(INOUT) :: TYPEl, TYPE2
| NTEGER, OPTI ONAL :: OPDUM
c ----- Doubl e TYPE2's scores.
if (PRESENT(OPDUM)) THEN
TYPE1YSCORES(1, 1) = TYPE2%SCORES(1) * OPDUM
ELSE
TYPE1YSCORES(1, 1)
ENDI F
END SUBROUTI NE

TYPE2USCORES(1, 1) * 2

USE M TYPE_S => MYTYPE, &

MYLOC => LCC Iprivate nodul e entities cannot be accessed
CHARACTER(LEN = 10) STR
TYPE (TYPE_S) STUDENT1, STUDENT2

CALL M_I NNER(STUDENT1, STUDENT2)
CALL OUTER(STUDENT1, STUDENT2)

STR = GRADE(3)

AVE = MAI N_| NNER(STUDENT1%SCORES)

CONTAI NS

! Internal subprograms are in another file
I NCLUDE ' denp90. i nc'

END

Cleanscape Software FortranLint User’'s Manual Version 7.x

124 Appendix D. Sample Output: Fortran 90

I ** denmp90.inc **
FUNCTI ON' MAI N_I NNER(DUM
REAL, INTENT(INOQUT) :: DUM:, :)
REAL (KI ND=KI ND{0.0D0)) :: SUM= 0
DONAVEL: DO 10 | = 10, SIZE(DUM 1)
DONAME2: DO 20 J = 10, SIZE(DUM 2)
IF (SUM < 0) CYCLE DONAME2
SUM = SUM + DUM I, J)
I F (SUM > 100) EXI T DONAMEL
20 END DO DONAME2
10 END DO DONAMEL
MAI N_I NNER = | NT (SUM)
END FUNCTI ON

D.2 Analysis Output

FortranLi nt Rev 5.0 2-Jan-02 10:49:55 Page 1

Default options: -w-u -Q207,276,76,261 -Ttrim -Xno_unreferenced_paraneters
- Xno_unused_common_vari abl es
Command options: -f -g -s -t -x -Sdenp90

denp90. f 90

Rk I O O O O

Subrouti ne M_|I NNER File denp90.f90 Li ne 16
<Mbdul e subprog of M

> TYPELYNAME = 'ALIAS: ' // TYPE2YNAMVE

> N

denp90. f90: M I NNER | i ne 19:

SYNTAX FYI #105- string will be truncated (from 17 to 10 chars).

Rk I R R Sk I kR R O S S R R O b S Sk R R R b R S kS S R R I kb o O R

Subr outi ne QUTER Fil e denp90. f90 Li ne 25

> TYPEL¥SCORES(1, 1) = TYPE2¥BCORES(1) * OPDUM

> N

denp90. f 90: QUTER | i ne 32:

SYNTAX ERROR #168- array referenced with too few subscripts.

Rk S R R S O R R kR Sk S S Rk b O b S R R R T S Rk S kS S R I S kR

Program MAI N File denp90. f 90 Li ne 38
> USE M TYPE_S => MYTYPE, &
> MYLOC => LCC Iprivate nodul e entities cannot be accessed
> N

denp90. f90: MAIN | i ne 42:
SYNTAX ERROR #661- entity not accessible in nodule M

> CALL M | NNER(STUDENT1, STUDENT2)
> N

denp90. f 90: MAIN | i ne 46:
| NTERFACE FYl #256- type TYPE_S passed to a type MYTYPE dunmy arg (sane fornat
but different nanes).

> CALL M | NNER(STUDENT1, STUDENT2)
> A

denp90. f 90: MAIN | i ne 46:
| NTERFACE FYl #256- type TYPE_S passed to a type MYTYPE dunmy arg (sane fornat
but different nanes).

> CALL OUTER(STUDENT1, STUDENT2)
> A

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix D. Sample Output: Fortran 90 125

denp90. f90: MAIN | i ne 47:
| NTERFACE FYl #256- type TYPE_S passed to a type MYTYPE dunmy arg (sane fornat
but different nanes).

> CALL OUTER(STUDENT1, STUDENT2)
> N

denp90. f90: MAIN | i ne 47:
| NTERFACE FYl #256- type TYPE_S passed to a type MYTYPE dunmy arg (sane fornat
but different nanes).

> AVE = MAI N_| NNER(STUDENT1%SCORES)
> AN

denp90. f 90: MAIN | i ne 49:
| NTERFACE ERROR #252- 1*4 array passed to dummy arg which is a R*4 array.

denp90. f90: MAI N | i ne 46:
USAGE ERROR #126- | ocal variable STUDENT2 is referenced but never set.

denp90. f90: MAIN | i ne 48:
USAGE WARNI NG #127- |l ocal variable STR is set but never referenced.

Rk S R R S O R R R S S R R o R R R S Sk R SRR S o S R R R R o O R R O o S

Functi on MAI N_I NNER File denp90.f 90 Li ne 53
<I nternal subprog of MAI N>

Rk S R R S ok Sk kO R R Rk S O S R R Rk O b S Sk R R S o R R S kSRR Ik kI b O R

d obal checki ng:
USAGE WARNI NG #743- nodule entity set but not referenced: M AVE

USAGE FYl #744- unused nodule entity: MLCC

Under VM S

FortranLi nt Rev 4. 30 2-Jan-02 10:49:55 Page 1

Local options: /WARN NGS / USAGE / SUPPRESS=207, 276, 76, 261 / NOTREE / NOXREF
Command options: /FYl /G.OBAL / STATI STI CS / QUTPUT=denp90

DEMX0. F90; 403

Rk S R R S o I R R I S R b S R R R S Sk R R R S o S S R R ok S S O R R R I b o

Subrouti ne M_| NNER Fi |l e DEM290. F90 Li ne 16
<Mbdul e subprog of M

> TYPEIYNAME = ' ALIAS: ' // TYPE2YNAMVE

> AN

DEMX0. F90: M_I NNER i ne 19:

SYNTAX FYI #105- string will be truncated (from 17 to 10 chars).

R I O O O R O

Subrout i ne QUTER Fi | e DEMX0. F90 Li ne 25

> TYPE1¥SCORES(1, 1) = TYPE2¥SCORES(1) * OPDUM

> N

DEMX0. F90: QUTER | i ne 32:

SYNTAX ERROR #168- array referenced with too few subscripts.

Rk I O S O O R S

Pr ogram MAI N Fi | e DEM290. F90 Li ne 38
> USE M TYPE_S => MYTYPE, &
> MYLOC => LCC Iprivate nodul e entities cannot be accessed
> N

Cleanscape Software FortranLint User’'s Manual Version 7.x

126 Appendix D. Sample Output: Fortran 90

DEMX0. F90: MAIN |i ne 42:
SYNTAX ERROR #661- entity not accessible in nodule M

> CALL M_I NNER(STUDENT1, STUDENT2)
> N

DEMD90. F90: MAI N | i ne 46:
| NTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (sanme fornmat
but different nanes).

> CALL M_I NNER(STUDENT1, STUDENT2)
> N

DEM290. F90: MAIN | i ne 46:
I NTERFACE FYI #256- type TYPE_S passed to a type MYTYPE dummy arg (sanme fornmat
but different nanes).

> CALL OUTER(STUDENT1, STUDENT2)
> N

DEMX0. F90: MAIN li ne 47:
| NTERFACE FYl #256- type TYPE_S passed to a type MYTYPE dunmy arg (sane fornat
but different nanes).

> CALL OUTER(STUDENT1, STUDENT2)
> N

DEMX0. F90: MAIN li ne 47:
| NTERFACE FYl #256- type TYPE_S passed to a type MYTYPE dunmy arg (sane fornat
but different nanes).

> AVE = MAI N_| NNER(STUDENT1%SCORES)
> AN

DEMX0. F90: MAI N [i ne 49:
| NTERFACE ERROR #252- 1*4 array passed to dumry arg which is a R*4 array.

DEMD0. F90: MAI N | i ne 46:
USAGE ERROR #126- | ocal variable STUDENT2 is referenced but never set.

DEM220. F90: MAIN | i ne 48:
USAGE WARNI NG #127- |ocal variable STR is set but never referenced.

Rk I O S O R S O O O L

Functi on MAI N_I NNER Fi | e DEMO90. F90 Li ne 53
<I nternal subprog of MAI N>

R R S S S I S S O R O S S Ik kR kS O o
d obal checki ng:
USAGE WARNI NG #743- nodule entity set but not referenced: M AVE

USAGE FYl #744- unused nodule entity: MLCC

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix D. Sample Output: Fortran 90 127
D.3 Statistics Output
>>> Statistics:
Nunber of source files: 1
Source files: 54 |ines, 1273 bytes (18% coments, 82% code)
Include files: 14 i nes, 352 bytes (5% coments, 95% code)
Total parsed: 68 |ines, 1625 bytes (15% coments, 85% code)
Total subprograns: 5
Subr out i nes: 2
Functi ons: 1
Program 1
Bl ock Dat a: 0
Modul es: 1
I ndi vi dual message sunmary
I NTRFC FYI #256- 4x: * passed to a * dummy arg (sane format but different
names) .
SYNTAX FYI #105- 1x: string will be truncated (from* to * chars).
USAGE ERR #126- 1x: local variable * is referenced but never set.
USAGE WARN #127- 1x: local variable * is set but never referenced.
SYNTAX ERR #168- 1x: array referenced with too few subscripts.
I NTRFC ERR #252- 1x: * array passed to dummy arg which is a * array.
SYNTAX ERR #661- 1x: entity not accessible in nodule *.
USAGE WARN #743- 1x: nodul e entity set but not referenced: *, *
USAGE FYI #744- 1x: unused nodul e entity: *, 6 *
Total messages: 12
Errors \Warni ngs FYl s
Synt ax: 2 0 1
Interface: 1 0 4
Dat a usage: 1 2 1
Implicit typing: <supp>
D.4 Call Tree
This is a primary tree starting at the program' MAIN :
MAI N- +- M
I
+- M_I NNER
I
+- QUTER- - M
|
+- [MAI N_I NNER]
Cleanscape Software FortranLint User’'s Manual Version 7.x

128

Appendix D. Sample Output: Fortran 90

D.5 Freeform Cross Reference

kkkkkkhk*k SY'\BO_ TABLE kkkkkkhk*k

*** Program

MAIN : defined at |line 38 of denp90.f90

Cal | s-

*** Subroutines:

M INNER : Minternal
Ar gs-

Cal | ed by- denp90.f90: MAIN
QUTER : defined at line 25 of denp90.f90

Ar gs-

Call s-

(type MYTYPE S,
denp90. f 90: M

Cal | ed by- denp90.f90: MAIN

*** Functions:
INT : 1*4 :
KIND : 1*4 :

MAIN_INNER : [*4 :
Ar gs-

PRESENT : L*4 :

intrinsic function
Call ed by- denp90. f 90:
intrinsic function
Cal | ed by- denp90.f90: MAI N: : MAI N_I NNER

MAI N i nt er nal defined at line 53 of denp90.f90

(R4 ar'ray R)
Cal | ed by- denp90.f90: MAIN

intrinsic function

Call ed by- denp90.f90: QUTER

SIZE : 1*4 :

*** Modul es:

intrinsic function
Cal | ed by- denp90.f90: MAI N: : MAI N_I NNER

M: defined at |ine 3 of denp90.f90

Cal | ed by- denp90.f90: QUTER, denp90.f90: MAI N

*¥** Types:

MYTYPE : size = 26 bytes
NAME : CHAR*10
in (denp90. f 90:

in (denp90. f 90:

SCORES (2,2) : |1*4 :

in (denp90. f 90:

in (denp90. f 90:

TYPE S : size = 26 bytes
NAME : CHAR*10

in (denp90. f 90:

SCORES (2,2) : |1*4 :

in (denp90. f 90:

*** Records:

STUDENT1 : type TYPE_S :
in (denp90. f 90:
STUDENT2 : type TYPE_S :

in (denp90. f 90:

M is Unused

in (denp90.f90: M : M INNER) is Ref, Set
QUTER) is Unused

KI ND= 4

M is Unused

QUTER) is Ref, Set

MAIN) is Unused

KIND= 4

MAIN) is Ref, Actual arg
| ocal

MAIN) is Ref, Set, Actual
| ocal

MAIN) is Ref, Actual arg

TYPEL1 : type MYTYPE : | ocal
in (denp90.f90: M : M INNER) is Dummy arg,
in (denp90.f90: QUTER) is Dummy arg, Set

TYPE2 : type MYTYPE : | ocal
in (denp90.f90: M : M INNER) is Dummy arg,
in (denp90.f90: QUTER) is Dumy arg, Ref

Cleanscape Software

FortranLint User's Manual

denp90.f90: M denp90.f90: M : M_| NNER,
denp90. f 90: QUTER, denn90. f 90: MAI N: : MAI N_I NNER

defined at line 16 of denp90.f90

(type MYTYPE S, type MYTYPE R)

type MYTYPE R

MAI'N: : MAI N_I NNER

arg

Set

Ref

Version 7.x

*** Vars/Arrays:

AVE @ |*4 :

DUM (:,:)
I 1*4
J o 1*4

LOC (10)

R4 : 1 ocal

in (denp9o0. f 90:

| ocal

in (denp90. f 90:

| ocal

in (denp90. f 90:

R4 : private

in (denp90. f 90:

OPDUM : |1*4 : | ocal

in (denp90. f 90:

STR : CHAR*10 : | ocal

SUM: R*8 :

in (denp90. f 90:
KIND= 8 : | ocal

Appendix D. Sample Output: Fortran 90

M is
MAI N)

MAI N: :
MAI N: :

MAI N: :

public entity of nodule M
in (denp90. f 90:
in (denp90. f 90:

Unused
is Set

MAI N INNER) is Dumy arg,

MAIN I NNER) is Ref,

MAIN I NNER) is Ref,

entity of module M

M is
OUTER)

MAI N)

Unused
is Dumy arg, Ref

is Set

in (denp90.f90: MAIN:: MAIN_INNER) is Ref,

*** Paraneters:

GRADE (6)

CHAR* 2

in (denp90. f 90:

Cleanscape Software

MAI N)

is Ref

FortranLint User's Manual

Set

Set

Set ,

Ref

Initialized

129

Version 7.x

130 Appendix D. Sample Output: FORTRAN 90

D.6 Tabular Cross Reference

kkkkkkhk*k SY'\BO_ TABLE kkkkkkk*k

*** Functions:

/---Calls---\ R Ref erences---------- \
Narre Cd ass Type Definition Argunents Li ne- Subpr og Subpr og File Li ne
I NT intrinsic func [*4 MAI N_I NNER denp90. f 90 13
Kl ND intrinsic func [*4 MAI N_I NNER denp90. f 90 5
M nodul e denp90.f90 line 3 QUTER denp90. f 90 27

MAI N denp90. f 90 41

MAI N pr ogram denp90.f90 line 38 41-M

46- M_| NNER

47- QUTER

49- MAI N_I NNER
MAI N_I NNER function 1 *4 denp90.f90 line 53 1: (R*4 array R MAI N denp90. f 90 49

MAI N i nternal
M_I NNER subrouti ne denp90.f90 line 16 1:(type MYTYPE S) MAI N denp90. f 90 46
M i nt er nal 2: (type MYTYPE R)
QUTER subrouti ne denp90.f90 line 25 1:(type MYTYPE S) 27-M MAI N denp90. f 90 47
2: (type MYTYPE R)
3:(1*4 RO
PRESENT intrinsic func L*4 QUTER denp90. f 90 31
Sl ZE intrinsic func [*4 MAI N_I NNER denmp90. f 90 6
MAI N_I NNER denp90. f 90 7
*** Types:
R e Fields------cmommmm e \
Narre Si ze Field Type Kind Attributes Subprogram File Ref er ences
MYTYPE 26 NAMVE CHAR* 10 M deno90. f 90 5-D
M : M_I NNER deno90. f 90 19-S 19-R
SCORES 1*4 (2,2) 4 M deno90. f 90 6-D

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix D. Sample Output: FORTRAN 90 131

OUTER denp90. f 90 32-S 32-R 34-S
34-R
TYPE_S 26 NAME CHAR* 10
SCORES 1*4 (2,2) 4 MAI N denp90. f 90 49-RA

*** Vars/Arrays:
Narre Type Kind Attributes Subpr ogram File Ref er ences
AVE 1 *4 public entity of M denp90. f 90 10-D

nmodul e M MAI N denp90. f 90 49-S
DUM R4 (:,1) | ocal MAI N: : MAI NI NNER

denp90. f 90 (denmp90.inc)3-P (denp90.inc)4-D
(dem90.inc)6-R (demp90.inc)7-R
(dem90.inc)9-R

| 1*4 | ocal MAI N: : MAI N_I NNER

denp90. f 90 (denp90.inc)6-RS (denp90.inc)9-R
J I *4 | ocal MAI N: : MAI N_I NNER

denp90. f 90 (denmp90.inc)7-RS (denmp90.inc)9-R
LOC R*4 (10) private entity of M denp90. f 90 9-D

nodul e M

OPDUM I *4 | ocal QUTER denmp90. f 90 25-P 29-D 31-R 32-R
STR CHAR* 10 | ocal MAI N denmp90. f 90 43-D 48-S
STUDENT1 type TYPE_S | ocal MAI N denmp90. f 90 44-D 46- SA 47- SA 49- RA
STUDENT2 type TYPE_S | ocal MAI N denmp90. f 90 44-D 46- RA 47-RA
SUM R*8 8 | ocal MAI N: : MAI N_I NNER

denp90. f 90 (denp90.inc)5-D (denmp90.inc)5-1
(dem90.inc)8 R (demn90.inc)9-S
(dem90.inc)9-R (denp90.inc)10-R
(denp90.inc)13-R

TYPEL type MYTYPE | ocal M : M_| NNER denp90. f 90 16-P 17-D 19-S

OQUTER denmp90. f 90 25-P 28-D 32-S 34-S
TYPE2 type MYTYPE | ocal M : M_I| NNER denmp90. f 90 16-P 18-D 19-R

QUTER denp90. f 90 25-P 28-D 32-R 34-R

Cleanscape Software FortranLint User’'s Manual Version 7.x

132

Appendix D. Sample Output: FORTRAN 90

*** Paraneters:

Cleanscape Software

actual argunent

used as an assuned array bound

decl aration

equi val enced

statenent function dummy argument
used as a label in a goto statenent
initialized

initialized indirectly

used as a label in an assign statenment
al | ocat ed

nul lified

opti onal dummy argunent

dunmy ar gument

ref erenced

set

usage cannot be determ ned
deal | ocat ed

FortranLint User's Manual

Version 7.x

Appendix E. Sample Output: FORTRAN 77 133

Appendix E

Sample Output: FORTRAN 77

E.1 Sample FORTRAN 77 Program

C ' PROCDAT'
PROGRAM PROCDAT
INTEGER IUNIT, PUNIT
| NCLUDE ' denp. i nc'
DO 1001 =1, 5

50 CALL GETUNIT(I+5, TUNIT, PUNIT)

CALL READNAME(CURI TEM NAME, CURI TEM DI MENSI ONS)
CALL SETTYPE(CURI TEM
CALL PRINT(CURITEM |UNIT)

100 CONTI NUE
IF (IUNIT .EQ 23) GO TO 50
END

C'GETUNT
SUBROUTI NE GETUNI T(UNIT, UNIT1)
I NTEGER UNIT, UNI T1
READ (UNIT1,*) UNIT
END

C ' READNAME'
SUBROUTI NE READNAME(NAME, DI MS)
CHARACTER* (*) NAME
| NTEGER | NUSE, STATUS
COMVON / BLOCK/ | NUSE, STATUS
REAL*8 DI M5(3)
READ (5, *) NAME, DI M5
END

C ' SETTYPE
SUBROUTI NE SETTYPE(CURI TEM
| NCLUDE ' deno. i nc'
CURI TEM TYPE = CURI TEM DI MENSI ONS(2)
IF (CURITEM TYPE .GI. 5) CALL PRINT(CURI TEM
END

C ' PRINT'
SUBROUTI NE PRI NT(CURITEM 1UNIT)
| NCLUDE ' denp. i nc'
IF (CURITEM TYPE . NE. COUNT) CALL PRINTIT(IUNIT, CURI TEM
END

C'PRINTIT
SUBROUTINE PRINTIT(ITUNIT, CURITEM
| NCLUDE ' denp. i nc'
IF (ITUNIT . EQ |INUSE) THEN
STATUS = 2
CALL DI PSTAT(4, CURI TEM
CALL GETUNIT(INU T, 3)
END | F
WRITE (IUNIT, *) CURI TEM TYPE
END

C ' DI PSTAT
SUBROUTI NE DI PSTAT(| STAT, CURI TEM
| STAT = PRINT(CURITEM 1)
END

C <<< DEMO. | NC >>>

Cleanscape Software FortranLint User’'s Manual Version 7.x

134 Appendix E. Sample Output: FORTRAN 77

STRUCTURE / | TEM
CHARACTER* 10 NAVE

| NTEGER TYPE

REAL DI MENSI ONS(3)
END STRUCTURE

RECORD /| TEM CURI TEM

I NTEGER | NUSE*2, STATUS, COUNT, TIME
COVMON / BLOCK/ | NUSE, STATUS
COWDON / BK2/ COUNT, TIME

E.2 Analysis Output

For tranLi nt Rev 5.0 2-Jan-02 10:49:55 Page 1
Default options: -w-u -Q207,276,76,261 -Ttrim-Xno_unreferenced_paraneters
- Xno_unused_common_vari abl es

Command options: --f -g -s -t -x -Sdeno -7

deno. f

N N L T T T
Pr ogr am PROCDAT File deno.f Line 2

> 50 CALL GETUNI T(!\+5, IUNIT, PUNIT)

>

deno. f : PROCDAT |ine 6:
I NTERFACE WARNI NG #63- expression is changed by subprogram

> 50 CALL GETUNIT(I+5, TUNIT, PUNIT)
> N

deno. f : PROCDAT |ine 6:
| NTERFACE ERROR #57- too many argunents.

> CALL READNAME(CURI TEM NAME, CURI TEM DI MENSI ONS)
> AN

deno. f : PROCDAT |ine 7:
| NTERFACE ERROR #252- R*4 array passed to dumry arg which is a R*8 array.

> CALL READNAME(CURI TEM NAME, CURI TEM DI MENSI ONS)
> N

deno. f: PROCDAT |ine 7:
| NTERFACE ERRCR #287- R*4 array passed to R*8 array of |larger size (by 12
byt es) .

> IF (ITUNIT .EQ 23) GO TO 50
> N

deno. f: PROCDAT |ine 11:
SYNTAX WARNI NG #47- branch into do |oop via |abel 50.

deno. f : PROCDAT | i ne 6:
USAGE ERROR #126- |ocal variable IUNIT is referenced but never set.

deno. f : PROCDAT |ine 3:
USAGE FYI #128- local variable PUNIT decl ared but unused.

R I O S R S S O L

Subr out i ne READNAMVE File denp.f Line 19
deno. f : READNAME | i ne 22:

I NTERFACE WARNI NG #185- common bl ock /BLOCK/ |ength mismatch (conpared to
initial use in routine PROCDAT).

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix E. Sample Output: FORTRAN 77 135

deno. f : READNAME | i ne 22:
| NTERFACE WARNI NG #122- common bl ock /BLOCK/ organi zation differs at menber
I NUSE (conpared to initial use in routi ne PROCDAT).

Rk S R R S S R IR S o Sk b S o b S R R b S Sk R R R S o O S R Rk S b o b o R R R R

Subr outi ne SETTYPE File deno. f Li ne 27

> I F (CURI TEM TYPE . GT. 5) CALL PRI NT(CURI TEM
> N

deno. f: SETTYPE | i ne 30:
I NTERFACE ERROR #56- not enough argunents.

Rk S R R S S R R R R O O R R b S S R R R S o S S R ok S S R R R S b S R R

Subroutine PRINTIT File denp.f Li ne 38

> CALL DI PSTAT(4, CURI TEM
> N

deno. f: PRINTIT line 42:
I NTERFACE ERROR #59- constant is changed by subprogram

> CALL DI PSTAT(4, CURI TEM
> N

deno. f: PRINTIT |ine 42:
| NTERFACE ERROR #248- struct | TEM passed to a R*4 dumy arg.

denpo.f:PRINTIT |ine 43:
USAGE WARNI NG #127- local variable INUT is set but never referenced.

Rk I O O O I O R S S O

Subrout i ne DI PSTAT File denp.f Li ne 48
> | STAT = PRINT(CURITEM 1)
> N
deno. f: DI PSTAT |ine 49:
| NTERFACE ERROR #95- this nane is defined as a subroutine.

Rk S R R S ok S R R Rk Sk S S R o R R AR S Sk I R R O R R ok S S S R I kI b R R

G obal checki ng:

*** | nconsi stent organization of common /BLOCK/, ref/set checking suppressed
for this common bl ock

USAGE ERROR #133- conmon bl ock nenbers referenced but not set: /BK2/ COUNT
USAGE FYI #135- unused common bl ock nenbers: [/BK2/TlIME

Under VMS:

FortranLi nt Rev 4. 30 2-Jan-02 10:49:55 Page 1

Local options: /WARN NGS / USAGE / SUPPRESS=207, 276, 76, 261 / NOTREE / NOXREF
Command options: /FYl /G.OBAL / STATI STI CS / QUTPUT=denp / LANG=f 77

DEMO. F; 403
IR S kS o kS O O kI kS O O I
Pr ogr am PROCDAT File DEMO F Line 2
> 50 CALL GETUNIT(145, TUNIT, PUNIT)
AN

>
DEMO. F: PROCDAT | i ne 6:
I NTERFACE WARNI NG #63- expression is changed by subprogram

> 50 CALL GETUNIT(I+5, TUNIT, PUNIT)
> N

DEMO. F: PROCDAT | i ne 6:
| NTERFACE ERROR #57- too many argunents.

Cleanscape Software FortranLint User’'s Manual Version 7.x

136 Appendix E. Sample Output: FORTRAN 77

> CALL READNAME(CURI TEM NAME, CURI TEM DI MENSI ONS)
> AN

DEMO. F: PROCDAT I ine 7:
| NTERFACE ERROR #252- R*4 array passed to dumry arg which is a R*8 array.

> CALL READNAME(CURI TEM NAME, CURI TEM DI MENSI ONS)
> N

DEMO. F: PROCDAT |ine 7:
| NTERFACE ERRCOR #287- R*4 array passed to R*8 array of |arger size (by 12
byt es) .

> IF (ITUNIT .EQ 23) GO TO 50
> N

DEMO. F: PROCDAT | ine 11:
SYNTAX WARNI NG #47- branch into do |oop via |abel 50.

DEMO. F: PROCDAT | ine 6:
USAGE ERROR #126- |ocal variable IUNIT is referenced but never set.

DEMO. F: PROCDAT | i ne 3:
USAGE FYI #128- local variable PUNIT decl ared but unused.

Rk I O S O S O

Subr out i ne READNAMVE File DEMO F Line 19

DEMO. F: READNAME | i ne 22:
| NTERFACE WARNI NG #185- common bl ock /BLOCK/ |ength nmismatch (conpared to
initial

use in routine PROCDAT).

DEMO. F: READNAME | i ne 22:
| NTERFACE WARNI NG #122- common bl ock /BLOCK/ organi zation differs at menber
I NUSE

(conmpared to initial use in routine PROCDAT).

Rk O R R S o I R R R R o b S R R R S Sk R R R S o R R ok S S R R R I b o O

Subr outi ne SETTYPE File DEMO F Li ne 27

> I F (CURI TEM TYPE . GT. 5) CALL PRI NT(CURI TEM
> N

DEMO. F: SETTYPE | i ne 30:
I NTERFACE ERROR #56- not enough argunents.

R I S O R S S O L

Subroutine PRINTIT File DEMO F Li ne 38

> CALL DI PSTAT(4, CURI TEM
> N

DEMO. F: PRINTIT line 42:
I NTERFACE ERROR #59- constant is changed by subprogram

> CALL DI PSTAT(4, CURI TEM
> N

DEMO. F: PRINTIT |ine 42:
| NTERFACE ERROR #248- struct | TEM passed to a R*4 dumy arg.

DEMO. F: PRINTIT |ine 43:
USAGE WARNI NG #127- local variable INUT is set but never referenced.

R I O O O O I

Subrout i ne DI PSTAT File DEMO F Li ne 48

> | STAT = PRINT(CURI TEM 1)
> AN

DEMO. F: DI PSTAT | i ne 49:
| NTERFACE ERROR #95- this nane is defined as a subroutine.

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix E. Sample Output: FORTRAN 77 137

Rk I R R S S R IR S o Sk b S o b S R R S S R R S R kT S kS S R Ik kS b O R

G obal checki ng:

*** | nconsi stent organization of common /BLOCK/, ref/set checking suppressed
for this common bl ock

USAGE ERROR #133- comon bl ock nenbers referenced but not set: /BK2/ COUNT
USAGE FYI #135- unused common bl ock nenbers: [/BK2/ Tl Me

E.3 Statistics Output

>>> Statistics:
Nunmber of source files: 1

Source files: 50 lines, 1276 bytes (6% coments, 94% code)
Include files: 44 i nes, 1052 bytes (14% coments, 86% code)
Total parsed: 94 |ines, 2328 bytes (10% coments, 90% code)

Total subprograns:
Subr out i nes:
Functi ons:

Pr ogram
Bl ock Dat a:
Modul e:

oOoroo N

I ndi vi dual nmessage sunmary

SYNTAX WARN #47- 1x: branch into do |l oop via | abel *.

I NTRFC ERR #56- 1x: not enough argunents.

| NTRFC ERR #57- 1x: too many arguments.

I NTRFC ERR #59- 1x: constant is changed by subprogram

I NTRFC WARN #63- 1x: expression is changed by subprogram
I NTRFC ERR #95- 1x: this nane is defined as a subroutine.

I NTRFC WARN #122- 1x: common bl ock /*/ organization differs at menber *
(conmpared to initial use in routine *).

USAGE ERR #126- 1x: local variable * is referenced but never set.
USAGE WARN #127- 1x: local variable * is set but never referenced.
USAGE FYI #128- 1x: local variable * declared but unused.

USACGE ERR #133- 1x: comon bl ock nenbers referenced but not set: *, *
USAGE FYI #135- 1x: unused common bl ock nmenbers: *, *

I NTRFC WARN #185- 1x: comon block /*/ length msmatch (conpared to initial
use in routine *).

I NTRFC ERR #248- 1x: * passed to a * dummy arg.
I NTRFC ERR #252- 1x: * array passed to dummy arg which is a * array.
I NTRFC ERR #287- 1x: * array passed to * array of larger size (by * bytes).

Total messages: 16

Errors Warni ngs FYl s

Synt ax: 0 1 0
Interface: 7 3 0
Dat a usage: 2 1 2

Implicit typing: <supp>

Cleanscape Software FortranLint User’'s Manual Version 7.x

138 Appendix E. Sample Output: FORTRAN 77

E.4 Call Tree

This is a primary tree starting at the program ' PROCDAT'

PROCDAT- +- GETUNI T

|
+- READNANE

|
+- SETTYPE- - PRINT (1) - - PRI NTI T- +- DI PSTAT- - * PRI NT*

| |
| + GETUNI T

|
+- PRI NT see 1

E.5 Freeform Cross Reference

*kkkkkkk*k SY'\BO_ TABLE *kkkkkkk*k
*** Program

PROCDAT : defined at line 2 of denp.f
Cal |l s- deno.f:GETUNI T, deno.f: READNAME, denp. f: SETTYPE,
deno. f: PRI NT
*** Subrouti nes:

DI PSTAT : defined at |line 48 of denp.f
Args- (1*4 S, RR4 R
Cal | s- deno. f: PRI NT
Call ed by- deno.f:PRINTIT
CETUNIT : defined at line 14 of denp.f
Args- (1*4 S, 1*4 R
Cal | ed by- deno.f: PROCDAT, deno.f: PRI NTIT
PRINT : defined at line 33 of deno.f
Args- (struct ITEMR 1*4 R
Calls- denmp.f:PRINTIT
Cal | ed by- denv. f: PROCDAT, denp.f: SETTYPE, deno.f: D PSTAT
PRINTIT : defined at line 38 of denp.f
Args- (1*4 R struct ITEMR)
Cal | s- deno. f: DI PSTAT, deno.f:GETUNI T
Cal | ed by- deno. f: PRI NT
READNAME : defined at line 19 of deno.f
Args- (CHAR*(*) S, R*8 array S)
Cal | ed by- deno. f: PROCDAT
SETTYPE : defined at line 27 of deno.f
Args- (struct | TEM RS)
Cal | s- denp. f: PRI NT
Cal | ed by- deno. f: PROCDAT

*** Common bl ocks:

BK2 : size = 8 bytes : Menbers- COUNT, TIME
Defi ned i n- deno. f: PROCDAT, denv.f:SETTYPE, deno. f: PRI NT,
deno. f: PRINTIT
BLOCK : size = 6 bytes : Menbers- | NUSE, STATUS
Defi ned i n- deno. f: PROCDAT, deno. f: READNANE,
deno. f: SETTYPE, denp.f: PRI NT, denp.f:PRINTIT

Cleanscape Software FortranLint User's Manual Version 7.x

*** Structures:

ITEM : size =

NAME : CHAR*10

in (deno.

in (deno.

in (deno.

in (deno.
TYPE : |*4

in (deno.

in (deno.

in (deno.

in (deno.

DI MENSI ONS (3)

in (deno.f:

in (deno.f:

in (deno.f:

in (deno.f:

f
f:
f
f

f
f:
f
f

* k%

Recor ds:
CURI TEM : struct
in (deno.f:
in (deno.f:
in (deno.f:
in (deno.f:

*** Vars/Arrays:

COUNT : |1*4 : bytes 0-3 of conmon /BK2/
in (deno.f:PRINT) is Ref
CURITEM: R*4 : |ocal
in (deno.f: DI PSTAT) is Dummy arg, |ndeterm nate,
DI MS (3) R*8 : | ocal
in (deno.f: READNAME) is Dumy arg, Set
I : 1*4 : local
in (deno.f: PROCDAT) is Ref, Set
INUIT : 1*4 : |ocal
in (denp.f:PRINTIT) is Set, Actual arglNUSE : 1*2 :
conmon / BLOCK/
in (denp.f:PRINTIT) is Ref
I STAT : 1*4 : |ocal
in (deno.f: DI PSTAT) is Dummy arg, Set
IUNIT : 1*4 : |ocal
in (deno.f: PROCDAT) is Ref, Actual arg
in (denp.f:PRINT) is Dumy arg, Ref, Actual arg
in (deno.f:PRINTIT) is Dummy arg, Ref
NAME : CHAR*(*) | ocal
in (deno.f: READNAME) is Dumy arg, Set
PUNIT : 1*4 : |ocal
in (deno.f: PROCDAT) is Unused
STATUS : 1*4 : bytes 2-5 of comon /BLOCK/
in (denp.f:PRINTIT) is Set
UNIT : 1*4 : |ocal
in (denp.f:GETUNIT) is Dummy arg, Set
UNITL : 1*4 : |ocal
in (deno.f:GETUNIT) is Dummy arg, Ref

Cleanscape Software

: PRI NT)
- PRI NTI T)

- PRI NT)
: PRINTI T)

| TEM :

Appendix E. Sample Output: FORTRAN 77

26 bytes

: PROCDAT)
: SETTYPE)
is Unused

: PROCDAT)
: SETTYPE)
is Ref

R4
PROCDAT)
SETTYPE)
PRI NT)
PRI NTI T)

| ocal
PROCDAT)
SETTYPE)
PRI NT)
PRI NTI T)

is Dumy arg,

is Set, Actual
is Unused

is Unused

is Unused
is Ref, Set

is Ref

is Set, Actual

is Ref

is Unused

is Unused

is Ref, Set,
is Dumy arg,

is Dumy arg,

Act ual

Ref ,

arg

arg

arg
Ref, Set,
Act ual
Ref ,

arg
Actual arg

FortranLint User's Manual

Act ual

Act ual

139

arg

arg

bytes 0-1 of

Version 7.x

140

E.6 Tabular Cross Reference

kkkkkkk*k SY'\BO_ TABLE kkkkkkk*k

*** Subroutines:

Argunent s

Appendix E. Sample Output: FORTRAN 77

/---Calls---\
Li ne- Subpr og

File

1:(1*4)
2: (R4 R)

1:(1*4)
2:(1*4 R)

1:(struct I TEM R
2:(1*4 R

PROCDAT
SETTYPE
DI PSTAT

1. (1*4 R
2:(struct ITEM R

42- Dl PSTAT
43-GETUNI T

6- GETUNI T
7- READNAME
8- SETTYPE
9- PRI NT

1: (CHAR*(*) 9)
2:(R*8 array S)

Narre Cl ass Type
DI PSTAT subroutine

CGETUNIT subrouti ne

PRI NT subroutine

PRI NTI T subrouti ne

PROCDAT program

READNANVE subrouti ne

SETTYPE subroutine

Definition

deno.f line
deno.f line
deno.f line
deno.f line
deno.f line
deno.f line
deno.f line

1:(struct | TEM RS)

30- PRI NT

PROCDAT

Nane Si ze Menber s
BK2 8 COUNT TI ME
BLOCK 6 | NUSE STATUS

PROCDAT

Cleanscape Software

FortranLint User's Manual

Version 7.x

Appendix E. Sample Output: FORTRAN 77 141
*** Structures:
R e Fields------cmommmm o \
Narre Si ze Field Kind Attributes Subprogram File Ref er ences
| TEM 26 NAME CHAR* 10 PROCDAT deno. f (deno.inc)3-D 7- SA
SETTYPE deno.f (deno.inc)3-D
PRI NT deno.f (denv.inc)3-D
PRI NTI T deno.f (deno.inc)3-D
TYPE PROCDAT deno.f (deno.inc)4-D
SETTYPE deno.f (denv.inc)4-D 29-S 30-R
PRI NT deno.f (deno.inc)4-D 35-R
PRI NTI T deno.f (denv.inc)4-D 45-R
DIMENSIONS R*4 (3) PROCDAT deno. f (deno.inc)5-D 7- SA
SETTYPE deno.f (denv.inc)5-D 29-R
PRI NT deno.f (deno.inc)5-D
PRI NTI T deno.f (denv.inc)5-D
*** Vars/Arrays:
Nare Type Kind Attributes Subpr ogram File Ref er ences
COUNT 1 *4 byt es 0-3 of PRI NT deno. f (demp.inc)9-D (deno.inc)11-D 35-R
conmon / BK2/
CURI TEM struct | TEM | ocal PROCDAT deno. f (demp.inc)7-D 7- SA 7- SA 8- RSA
9-RA
SETTYPE deno. f 27-P (demo.inc)7-D 29-S
29-R 30-R 30- RA
PRI NT deno. f 33-P (demo.inc)7-D 35-R
35-RA
PRI NTI T deno. f 38-P (demo.inc)7-D 42-RA
45-R
CURI TEM R 4 | ocal DI PSTAT deno. f 48-P 49- XA
DI MS R*8 (3) | ocal READNANVE deno. f 19-P 23-D 24-S
| | *4 | ocal PROCDAT deno. f 5-RS 6-R
INUT | *4 | ocal PRI NTI T deno. f 43- SA
I NUSE | *2 bytes 0-1 of PRI NTI T deno. f (denmp.inc)9-D (deno.inc)10-D 40-R
conmon / BLOCK/
| STAT | *4 | ocal DI PSTAT deno. f 48-P 49-S
Cleanscape Software FortranLint User’'s Manual Version 7.x

142 Appendix E. Sample Output: FORTRAN 77
ITUNIT 1*4 | ocal PROCDAT deno. f 3-D 6- RA 9- RA 11-R
PRI NT deno. f 33-P 35-RA
PRI NTI T deno. f 38-P 40-R 45-R
NAME CHAR* (*) | ocal READNAME deno. f 19-P 20-D 24-S
PUNI T 1 *4 | ocal PROCDAT deno. f 3-D
STATUS 1 *4 bytes 2-5 of PRI NTI T deno. f (demp.inc)9-D (deno.inc)10-D 41-S
common / BLOCK/
UNIT I *4 | ocal GETUNI T deno. f 14-P 15-D 16-S
UNI T1 1*4 | ocal GETUNI T deno. f 14-P 15-D 16-R
------------------ LEGEND ------------------
A - actual argunent
B - used as an assuned array bound
D - declaration
E - equival enced
F - statenent function dummy argunent
G - used as a label in a goto statenent
I initialized
i initialized indirectly
L used as a label in an assign statenent
M - allocated
N- nullified
O - optional dummy argunent
P - dummy argunent
R - referenced
S - set
X - usage cannot be detern ned
Z - deallocated
Cleanscape Software FortranLint User's Manual Version 7.x

Appendix F. Diagnostic Messages 143

Appendix F

Diagnhostic Messages

F.1 Format

FortranLint 's diagnostic messages are defined in a text file named flint.err. This
file contains one message per line in the following format:

#H# XX Text
where ### is a three-digit message number
XX is a two-letter diagnostic code
Text is the message text

Example:
157 SE no matching "(".

If the message number is less than three digits long, it is right-justified in a three-
column field.

The first letter of the diagnostic code specifies a basic error category as follows:

Letter Type of problem

Syntax

Data usage

Call interface

Portability

Implicit typing

Overflow (limit exceeded)

oOZUT—Cw

The second letter of the diagnostic code specifies a severity level as follows:

Letter Type of problem

E Error
w Warning
F Hint (FYI)

Lines that start with an 1" are not diagnostic messages. These lines contain
information used during portability checking.

Cleanscape Software FortranLint User’'s Manual Version 7.x

144 Appendix F. Diagnostic Messages

F.1 Modifying theflint.err file

NOTE: Modification of the flint.err file is not recommended. Rather, a user
should contact Cleanscape to discuss the merits of changing the severity or text
content of a Flint analysis message. However, in certain circumstances a customer
may decide modification is appropriate for their environment.

In such case, it is recommended that the original flint.err file be saved first as
flint.err.orig. Note that any changes would be lost upon installing a new version of
Flint obtained from Cleanscape.

If it is decided that the severity of a Flint error message is too high, or the error

text is not descriptive enough for a particular application, the flint.err file may be
modified using a standard text editor, paying careful attention to existing format.

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix G. Performance 145

Appendix G

Performance

G.1 Disk Space

G.1.1 Program Size

On most systems, FortranLint requires 1 MB to 6 MB of disk space for the package
itself. Additional space is required during analysis (see below). On Windows
systems or Unix/Linux systems with the GUI option, the size may be up to 20 MB.

G.1.2 Temporary Files

FortranLint generates temporary files during processing. These files are auto-
matically deleted upon program termination, including aborts.

The library function tempnam() is used to obtain names for the temporary files.
On most systems, the environment variable TMPDIR may be used to control the
directory used by tempnam(); if TMPDIR is not set, tempnam() normally uses
/usr/tmp or /tmp. For additional information, see the UNIX “man” page for
tempnam().

Under VMS, temporary files are placed in the directory specified by
SYS$SCRATCH.

Generally speaking, temporary files will require 2 MB (or more) of disk space for

every 10,000 lines of source code. Cross-reference tables and call trees will increase
the amount of disk space required.

Cleanscape Software FortranLint User’'s Manual Version 7.x

146 Appendix G. Performance

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix H. Xlint Installation 147

Appendix H

Xlint Installation, Unix/Linux

H.1 Pre-installation

The Xlint installation procedure assumes that FortranLint has already been installed
and activated. If FortranLint has not been installed, see the instructions in Appendix
A.

Note: The FortranLint / Xlint “installation directory” mentioned in the following
sections is the directory that contains the FortranLint / Xlint support files (for
example, flint.err and flint.cfg).

H.2 Installation Procedure
1. Log in as system manager.

2. Go to the FortranLint / Xlint installation directory. The following Xlint
support files should already be present:

xlint # Xlint executable
XLint # Xlint resource file
demo.fdb # demo database generated from demo.f

3. Modify the user configuration for each Xlint user as follows:

(a) Set the environment variable XLINTHOST to the host name of
the system where the Xlint license manager will be running. (To
obtain the host name, execute the UNIX command hostname on
the server.)

(b) Set the environment variable XLINTPATH to a full path for

the directory which contains the user's own FORTRAN source
files.

(c) Set the environment variable XLINTHOME to a full path for
the Xlint installation directory.

For example, if the user is using csh, use commands of the form:

setenv XLINTHOST nodename
setenv XLINTPATH source path
setenv XLINTHOME ingtallation_directory

Cleanscape Software FortranLint User’'s Manual Version 7.x

148

Appendix H. Xlint Installation

If the user is using sh, use commands of the form:
XLINTHOST=nodename; export XLINTHOST
XLINTPATH=source_path; export XLINTPATH
XLINTHOME-=installation_directory; export XLINTHOME

Note: There should no white space on either side of the “equals” sign.

For other shells, substitute the appropriate commands.

Add $XLINTHOME to the user's search path. This step can be omitted if
$FLINTHOME points to the same directory as $XLINTHOME and
$FLINTHOME has been already been added to the search path.

For csh users, use the command:
set path=($path $XLINTHOME)
For sh users, use the command:
PATH=3$XLINTHOME:$PATH

To make the changes permanent, add the new command to the
appropriate login scripts. For example, for csh users, modify “.cshrc”.

Optional: The Xlint package includes a utility program flpatch that can be
used to patch the Xlint installation directory and server name directly into
the xlint executable.

To patch the executable, use commands of the form:

flpatch xlint home directory
flpatch xlint host hosthame

Replace directory with the Xlint installation directory, and hostname with the
host name for the system that will be running the Xlint license manager.

Note: The install_flint shell script runs flpatch automatically. flpatch
therefore should be needed only if one of these parameters changes.

Copy the XLint resource file (XLint) to the appropriate directory or
directories.

A copy of this file should be placed in the home directory for each Xlint
user. By default, Xlint uses this copy. Users may specify alternate versions
on the Xlint command line; for additional information, see section 15.3.

Alternatively, users may set the standard environment variable XAPPL-
RESDIR or use the standard app-defaults directory. For additional infor-
mation, see the operating system vendor’s “X” documentation.

Users are now ready to activate Xlint.

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix H. Xlint Installation 149

H.3 Activation Procedure

Every Xlint license must be assigned a unique authorization number (activation
key) before the package will run.

1. To proceed, execute the following command:
xlint activate
The software will provide users with a server code, and it will prompt
them to call Cleanscape for activation. Cleanscape will use the server code
to generate a unique authorization number for the software.
2. After an activation key is obtained, execute the command:
xlint activate

again, and enter the activation key when prompted.

3. If the license manager process iptlmd has not already been started, users
will need to execute the command:

startup

from the installation directory. Note that a single iptlmd process will allow
both FortranLint and Xlint to run.

Users will need to run startup every time they reboot the system or kill the
license manager. To avoid this step, add the startup command to the
appropriate system boot script.

4, The license manager daemon requires a three minute period after being
started for initialization. When the three minutes are up, execute the
command:

xlint

Xlint is now ready for use.

Note: For license manager options, see Appendix C.

Cleanscape Software FortranLint User’'s Manual Version 7.x

Appendix I. Xlint Installation Under VMS 151

Appendix |

Xlint Installation Under VMS

.1 Pre-installation

The Xlint installation procedure assumes that FortranLint has already been installed
and activated. If FortranLint has not been installed, see the instructions in Appendix
B.

Note: The FortranLint / Xlint “installation directory” mentioned in the following

sections is the directory that contains the FortranLint / Xlint support files (for
example, flint.err and flint.cfg).

|.2 Installation Procedure

1. Log in as system manager.
2. Go to the FortranLint / Xlint installation directory. The following Xlint
support files should already be present:
XLINT.EXE I Xlint executable file
XLINT.DAT I Xlint resource file
DEMO.FDB I demo database file for demo.for
3. Modify the user configuration for each Xlint user as follows:
(a) If the Xlint license manager is installed on a DECNET server, set

the logical XLINTHOST to the node name for the server.
Otherwise, set XLINTHOST to “NO_DECNET™.

Note: To obtain the node name, execute the command “show
logical SYSSNODE” on the server. Discard any “colon”
characters.

(b) Set the logical XLINTPATH to a full path for the directory which
contains the user's own FORTRAN source files.

(c) Set the logical XLINTHOME to a full path for the Xlint
installation directory.

Cleanscape Software FortranLint User’'s Manual Version 7.x

152

Appendix I. Xlint Installation Under VMS

(d) Set the logical XLINT to a full pathname for the executable file
XLINT.EXE in the installation directory.

Add the new commands to the appropriate login.com files.
Example:

define XLINTHOST “nodename”

define XLINTPATH [source path]

define XLINTHOME [installation_directory]
XLINT :== $XLINTHOME:XLINT.EXE

Optional: The FortranLint package includes a utility program named
FLPATCH.EXE that can be used to patch the Xlint installation directory
and server node name directly into the Xlint executable file.

To patch Xlint, use commands of the form:

FLPATCH XLINT.EXE HOME disk:[directory path]
FLPATCH XLINT.EXE HOST nodename

disk:[directory_path] should specify the Xlint installation directory. nodename
should be the appropriate node name (or “NO_DECNET?”), as explained
in step 3.

Copy the resource file (XLINT.DAT) to the appropriate directory or
directories.

Two logicals are used:

DECWS$SYSTEM_DEFAULT -- System directory (same for all users)
DECWS$USER_DEFAULTS -- Per-user directory

To install a copy of XLINT.DAT for system-wide use, place it in the
directory specified by DECW$SYSTEM_DEFAULTS. To install a copy
of XLINT.DAT for use by an individual user, place it in the directory
specified by DECW$USER_DEFAULTS for that user.

Note that users may an alternate resource file on the Xlint command line;
for additional information, see section 15.3.

Users are now ready to activate Xlint.

Cleanscape Software FortranLint User's Manual Version 7.x

Appendix I. Xlint Installation Under VMS 153

|.3 Activation Procedure

Every Xlint license must be assigned a unique authorization number (activation
key) before the package will run.

1. To proceed, execute the following command:
FLINT /LICENSE=ACTIVATE
The software will provide users with a server code, and it will prompt
them to call Cleanscape for activation. Cleanscape will then use this
information to provide them with a unique authorization number needed
to run the software.
2. After an activation key is obtained, execute the command:
FLINT /LICENSE=ACTIVATE

again, and enter the activation code when prompted.

3. If the license manager (iptimd) hasn't already been started, users will need
to execute the command:

@FLINTHOME:STARTUP.COM

This will start the license daemon. Note that a single iptimd process will
allow both FortranLint and Xlint to run.

Users will need to run @FLINTHOME:STARTUP again if they reboot
the system or Kill the detached process. Alternatively, simply add the
STARTUP command to the appropriate system startup script.

4, The detached process requires a three minute period after being started for
initialization. When the three minutes are up, execute the command:

XLINT
Xlint is now ready for use.

Note: For license manager options, see Appendix C.

Cleanscape Software FortranLint User’'s Manual Version 7.x

mailto:@FLINTHOME:STARTUP.COM

