
1

qef Technical Overview
The qef environment consists of qef, its supporting programs, a graphical user interface and

documentation. This introduces some of the more important features and their benefits.

BASIC qef ARCHITECTURE

qef is primarily a driver that manages three stages, which are:

1) Configuration and control variable database preparation

2) Script preparation

3) Back end interpretation.

This architecture affords a great deal of flexibility and power. qef may be used to manage a
wide range of processing in a single and consistent user interface. The ability to use arbitrary
script preparation and arbitrary back-ends supports the choice of “the right tool for the job.”
Script preparation also allows for dynamic run-time modification of the job to be done.

THE qvrs CONFIGURATION PARAMETERS SYSTEM

qef uses a separate program, qvrs, to manage the configuration and control parameters,
variables, search paths, tool names, etc. Usually qvrs is invoked to build variable/value database
for other tools such as qef. It also provides debugging facilities and simple run-time or
temporary over-rides. Part of the basic qvrs facility is a mechanism to incorporate a user’s
build-specific configuration file.

The qvrs approach eliminates most of the problems involved in configuration settings and
control. The variables provide for specification of platform, project, sub-project, build-config, user
and directory specific settings. Using a simple language, this versatility, extensively documented,
will effectively insure an easily tailored configuration. This language offers a rich set of functions
providing system tests, states of the system, variable settings and retrieving a variety of
information. To facilitate testing of variables, qvrs has a number of flags that output a variety of
information about variables and their settings.

SCRIPT PREPARATION

Script preparation is done at run-time. This can be a simple specification of a file to be
processed, or the specification of a shell command to be run to prepare the script. The most
commonly used approaches are to use qefdirs to translate a list of directories and their

qef

2

supported constructions into a make-like script, or to use sls to generate a list of source files
for the directory and qsg to translate that list and simple commands into input for a qef
provided back-end.

The ability to specify an arbitrary process to generate the input provides great flexibility
and allows one to reduce the required facilities within a directory to their simplest form. This
also encourages the provision of all required processing within a single and consistent interface
— “All one ever says is ‘qef’.’”

qsg — THE MAIN qef SCRIPT GENERATOR

qsg, the primary qef script generator, is a programming system specifically designed to
generate input to other processes. Its major purpose is to handle statements of the following
form:

commands @argv # process all the sources in the current

directory as single module files

library -n Name -v @argv # create a library called Name

from the sources in the current directory,

with a version file

The scripts commands and library in the above examples are scripts in the standard qsg
archive.

They will generate the make-like script to process all the argument files, with complete and
comprehensive targets and facilities. The scripts themselves deal with host-specific problems.
Facilities exist to trivially add support for new languages and file types (based on suffixes).

In 1200 qef files at three different sites, the average length was 3 lines of qsg input. Many
were one-liners, and those same qef files would be used for all systems; yet the generated build-
scripts would contain complete and comprehensive controls, allowing the user to select the
construction of any specific target or intermediate file and supported variations (i.e., if you have
purify, facilities to build the purify objects are created). Compare this with the huge incomplete
static makefiles, sometimes replicated for each different host platform.

SCRIPT MACRO PROCESSING

Normally, qef invokes a built-in C-like macro processor, henceforth referred to as qefpp,
to process the generated scripts before output to the back-end. This is usually to perform tool-
name substitution, source path resolution, insertion of flags into the build-recipes, and
incorporation of dependency lists (see incls).

qef Technical Overview

3

qefpp greatly eases the task of creating a script (possibly via a script generator), because
the generator or user can use macros for paths, tools, and flags, the values of which are usually
extracted from the qvrs database.

SEPARATION OF SOURCE AND OBJECT TREES

qef ’s run-time generation and processing of scripts facilitates (and encourages) the total
separation of source and object cheaply and effectively: just naming a source tree to be included
in a qvrs file is required (and the tools are provided to help). The script generators, macro
processors, and many of the other tools search the source path for files either on request or
automatically.

The benefits of this separation are many. All users may share a single master (read-only to
most) tree of sources. Developers have their own trees to contain the files they are changing or
creating, thereby eliminating the problems of developers interfering with each other or
production. Builds are done in separate directories, thereby facilitating building using the same
sources for multiple configurations. Note: Setting up a separate tree is a single command that
simply creates a couple of qvrs files and creates the required or requested sub-directories.

qdsrv – THE UNIVERSAL qef DIRECTORY DATABASE

qdsrv is a network server program that maintains a database of project trees. qdadd
adds new entries to this database and qds extracts selected entries, either by index or
attributes. Other programs exist to manage and check the entries and to bind entries to a user’s
session. The creation of a new tree automatically adds that tree’s entry to the database.

The ubiquitous and major problem within any organization as to where a project’s sources
and developments are to be found is solved! A user does not need to know actual pathnames of
trees. A one-line shell alias or function can be created that allows the user to chdir to a
directory named by specification of the desired tree’s owner, name, release, host, configuration,
and/or type.

incls – DYNAMIC DEPENDENCY TRACKING

Usually qefpp includes the running of a command to insert the list of source implied
dependencies (e.g., the # include statement in C) into the script. The program incls is used to
do this. incls is extremely fast and maintains a database to avoid rescanning files that have not
changed. It currently handles eight different languages varying from C to TeX to SmartWare
printer description files. Facilities are provided to add new languages. incls also supports
processing individual files or lists of files of arbitrary types, providing a variety of output formats.
The new consistency engine under development incorporates lazy evaluation of dependencies.

qef Technical Overview

4

The automatic inclusion of all dependencies is fairly cheap and painless. On 450 ‘C’ source
files, incls took 1/5 the time of X11’s makedepend when it had to scan all its input files. The
second time incls was 25 times faster. Larger comparisons were not possible, as makedepend
has built-in limits. Also note that makedepend is limited to C and a single output format. Even
if incls is more costly, it is worth it. Its pedantic creation of all dependencies eliminates a large
amount of expensive programmer time (i.e., hunting for bugs caused by a header file version
skew).

LIBRARY NAMING AND MAPPING

Another of qefpp’s major functions is to find and resolve libraries for programs. Using
various qvrs variables and information extracted from the relevant source files, qefpp searches
for the libraries to be linked with a program to ensure a complete dependency list. It also
provides the appropriate list to the linking commands. Mechanisms are provided for
specification of overrides, remappings of the library symbolic names and the use of static or
shared libraries for individual or all libraries for either individual or all programs. A separate tool,
libs, is provided to test the mappings and searches.

The mechanisms provided allow the specification of a program’s libraries using a comment
embedded in the source file for that program. For example:

/* LIBS: -lXaw -lXmu -lXt -lXext -lX11

 */

The various qvrs library mapping variables can then be used to resolve any necessary
adjustments for the configuration. Usually most such adjustments are made universally for a
system or project. This simple specification can be converted into the appropriate path names
and/or flags in the required forms, yet easy mechanisms to control these mappings are available
via qvrs settings. For example:

set ExtraLibs -lplumber # add -lplumber to every program

set LibMap[-lX11] -lX11 -lbsd # add -lbsd to any use of -lX11

set LibStatic[-lXaw] X Y* # static -lXaw library used for programs X and Y*

VERSION SYSTEM INTERFACE

This facility provides a system-independent interface to be used within qef to provide basic
source code control functions. More sophisticated commands can be invoked by the user via
the command line window or by invoking the version control system directly. Each version
system will be required to support the following:

qef Technical Overview

5

co check out
ci check in
diff show differences between gfile and vfile
vdiff show differences graphically – using provided xvdiff
tell tell me about editing activity within current directory
new create a new administration file

qef ’s version control interface provides complete implementations for SCCS and RCS.
Other version systems with a command line interface can be easily added to qef. To create a
new interface, copy an existing interface file for RCS and modify it for a new version control
system.

BACK-ENDS

The qef product contains a number of programs built specifically for use as back-end
interpreters. qsh is a limited shell command interpreter that provides suitable command
echoing, selected ignoring of the exit status, and a gentle halt. mimk is a make-like process that
provides multiple parallel execution of recipes, a history, extended consistency rules (e.g.,
recipes applied if recipe or dependency lists have changed), and a gentle halt. As part of its
dependency mechanism, mimk allows intermediate files to be missing but still considers the
target to be up-to-date. qmk, a mimk extension under development, provides lazy dependency
evaluation, extended history mechanisms, and more controls over execution ordering.

The parallel execution has substantial performance benefits. The extended consistency
mechanism goes a long way towards guaranteeing source/product consistency. The ability to halt
a project reliably with a trivial mechanism should be recognized as being valuable by any
experienced reader.

THE GRAPHICAL USER INTERFACE (GUI)
qef has a graphical user interface to provide tree navigation, access to the user

documentation, build controls and monitoring, access to the project database, file management,
an interface to the arbitrary version system, etc.

The GUI greatly reduces the learning curve and understanding of the system. This results in
accelerated implementation and acceptance of the system by the development teams.

ADDITIONAL TOOLS & UTILITIES

A number of tools are provided to deal with aspects of the construction task.

qef Technical Overview

6

instal is a paranoid (checks everything it can) installation process that: maintains an audit
trail; retrieves installation flags from the qvrs database; provides option to record chown,
chmod, or chgrp errors rather than abort; optionally adds DOS CR-LF to the installed files;
suppresses installation if the file’s content will not change; creates necessary directories; and
performs some work-a-rounds to deal with some systems’ bugs.

mkvernum is a program used to create version files or strings for embedding in other
files or projects.

One of the formatting controls is to include a count that is incremented on each use,
thereby providing a unique identifier for the version string. A number of utilities provide options
to embed mkvernum strings in their produced files.

arupdate is a sophisticated interface to the archiver. Its primary feature is that one
specifies the list of all the files it should contain, rather than those to be added as is the case
with the standard tool ar. Thus arupdate can remove files that should not be in the archive. It
can embed mkvernum generated objects in the database, include all or selected parts of
other libraries, and accept file listing objects to be added to the library. This tool is a substantial
improvement over the conventional approaches used to maintain archives. Of particular
importance is the removal of library objects that are no longer needed. Many developers have
spent hours debugging problems due to the presence of obsolete files remaining from older
builds of the archives.

The qef system consists of about 80 tools, most of which have not been mentioned
directly. Some of these tools are provided for use within construction recipes; however, many
are useful in their own right.

Copyright 1999. All rights reserved.
 Software International, Inc.

No portion of this document may be reproduced in any way or by any means without
the permission of Software International.

If you have any questions or comments regarding the content of this document, please
contact Cleanscape at (408) 978-7000 or send us e-mail at: info@cleanscape.net
For more information regarding other Cleanscape products, please visit our website: www.cleanscape.net

qef Technical Overview

4.00

